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Abstract

One-hundred-million atom ( 100-nm-scale )

electronic structure calculations were realized

on the K computer. The methodologies

are based on inter-disciplinary collabo-

rations among physics, mathematics and

the high-performance computation field

or ‘Application-Algorithm-Architecture co-

design’. Novel linear-algebraic algorithms

were constructed as Krylov-subspace solvers

for generalized shifted linear equations

((zS − H)x = b) and were implemented in

our order-N calculation code ‘ELSES’ with

modeled (tight-binding-form) systems. A high

parallel efficiency was obtained with up to the

full core calculations on the K computer. An

application study is picked out for the nano-

domain analysis of sp2-sp3 nano-composite

carbon solid. Future aspects are discussed for

next-generation or exa-scale supercomputers.

The code for massive parallelism was devel-

oped with the supercomputers, the systems B

and C, at ISSP.

1 Introduction

The current or next generation computational

physics requires ‘Application-Algorithm-

Architecture co-design’, or inter-disciplinary

collaborations among physics, mathematics

and the high-performance computation field.

Our recent papers [1, 2] report that

electronic structure calculations with one-

hundred-million atoms were realized on the

K computer and the methodologies are based

on the Application-Algorithm-Architecture co-

design with novel linear algebraic algorithms

[3, 4]. The calculations are called ‘100-nm-

scale’, because one hundred million atoms are

those in silicon single crystal with the vol-

ume of (126nm)3. The calculations were re-

alized by our electronic structure calculation

code ‘ELSES’ [5] and the computational cost

is order-N or proportional to the number of

atoms N . The code uses modelled (tight-

binding-form) Hamiltonians based on ab initio

calculations. Since the fundamental method-

ologies are purely mathematical, they are ap-

plicable both to insulating and metallic cases.

Moreover, they are applicable also to other

physics problems amang and beyond electronic

structure calculations.

Fig. 1 illustrates our basic strategy for

large-scale calculations with the Application-

Algorithm-Architecture co-design. The essen-

tial concept is to combine new ideas among the

three fields for a breakthrough. The possibility

of sharing the mathematical solvers among ap-

plications will be discussed in the last section.

The present paper is organized as follows;

Section 2 explains the fundamental mathemat-

ical theory. Section 3 is devoted to the com-

putational procedures and benchmarks. Sec-
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co-design, our basic strategy for large-scale cal-

culations.

tion 4 describes an application study on a

nano-domain analysis of nano-composite car-

bon solids. Summary and future aspects are

given in the last section.

2 Fundamental mathematical

theory

Our fundamental mathematical theory is novel

linear-algebraic algorithms with Krylov sub-

space.

Krylov subspace [6] is a general mathemat-

ical concept and gives the foundation of vari-

ous iterative linear-algebraic solvers. such as

the conjugate gradient method. A Krylov sub-

space is denoted as Kν(A; b) with a given in-

teger ν, a square matrix A and a vector b, and

means the linear (Hilbert) space that spanned

by the ν basis vectors of {b, Ab, ...., Aν−1b}:

Kν(A; b) ≡ span{b, Ab, ...., Aν−1b}. (1)

Usually, the subspace dimension ν is the it-

eration number of the iterative computational

procedures and a matrix-vector multiplication

with a vector of v (v ⇒ Av) governs the oper-

ation cost at each iterate.

A mathematical foundation of electronic

state calculations is a generalized eigen-value

equation

Hyk = εkSyk. (2)

The matrices H and S are Hamiltonian and

the overlap matrices, respectively. These ma-

trices are M × M real-symmetric (or Hermi-

tian) matrices and S is positive definite. In

this paper, the real-space atomic-orbital rep-

resentation is used and the matrices are sparse

real-symmetric ones. Large-matrix calcula-

tions with the conventional solvers for Eq. (2)

give huge operation cost and difficulty in mas-

sive parallelism.

For years, we have constructed novel linear

algebraic solvers for large-system calculations,

in stead of the conventional generalized eigen-

value equation in Eq. (2). They are commonly

based on linear equations in the form of

(zS −H)x = b. (3)

Here z is a (complex) energy value and the

matrix of (zS−H) can be non-Hermitian. The

vector b is an input and the vector x is the

solution vector. The set of linear equations

in Eq. (3) with many energy values is called

‘generalized shifted linear equations’. A recent

preprint [2] contains the complete reference list

of our novel solvers and the present paper picks

out two methods [7, 3].

The use of Eq. (3) results in the Green’s

function formalism, since the solution x of

Eq. (3) is written formally as x = Gb with

the Green’s function G = G(z) ≡ (zS −H)−1.

These solver algorithms are purely mathe-

matical and applicable to large-matrix prob-

lems in many computational physics fields.

Our study began for our own electronic struc-

ture calculation code and, later, grew up

into more general one. For example, the

shifted Conjugate Orthogonal Conjugate Gra-

dient (sCOCG) algorithm [7], one of our al-

gorithms, is based on a novel mathemati-

cal theorem, called collinear residual theorem

[8]. After the application study on our elec-

tronic structure calculations [7], we applied
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the sCOCG algorithm to a many-body prob-

lem for La2−xSrxNiO4(x = 1/3, 1/2), since a

large-matrix problem with the matrix size of 64

millions appears. [9] The sCOCG algorithms

were applied also to the shell model calculation

[10] and a real-space-grid DFT calculation [11].

Other applications with the collinear residual

theorem [8] are found, for example, in a QCD

problem [8] and a electronic excitation (GW)

calculation [12].

3 Computational procedures

and benchmarks

This section is devoted to the computational

procedure of our electronic structure calcula-

tion and their benchmarks for the order-N

scaling [3] and the parallel efficiency [1, 2]. In

all the results of the present paper, the mul-

tiple Arnoldi method [3] is used as the solver

for Eq. (3), since it is suitable for a molecu-

lar dynamics simulation [3]. Equation (3) is

solved with the multiple Krylov subspaces of

L ≡ Kp(H; b) ⊕ Kq(H;S−1b). The subspace

dimension ν is ν ≡ p + q. The second term is

introduced, so as to satisfy some physical con-

servation laws exactly. The multiple Arnoldi

method gives the Green’s function G.

The procedures for calculating physical

quantities are briefly explained. In general, a

physical quantity is defined as

⟨X⟩ ≡
∑
k

f(εk)y
T
k Xyk (4)

with a given matrix X and the occupation

number in the Fermi function f(ε) . The case

in X = H, for example, gives the electronic

structure energy

Eelec ≡
∑
k

f(εk) εk. (5)

A quantity in Eq.(4) is transformed into the

trace form of

⟨X⟩ = Tr[ρX] (6)

with the density matrix

ρ ≡
∑
k

f(εk)yk y
T
k . (7)

The density matrix is given by the Green’s

function as

ρ =
−1

π

∫ ∞

−∞
f(ε)G(ε+ i0) dε, (8)

because of

G(z) =
∑
k

yk y
T
k

z − εk
. (9)

The energy integration in Eq. (8) is carried out

analytically in the multiple Arnoldi method.

The chemical potential µ appears in the Fermi

function f(ε) and is determined by the bisec-

tion method. The computational workflow is

summarized as

(H,S) ⇒ G ⇒ µ ⇒ ρ ⇒ ⟨X⟩. (10)

Several points are discussed; (i) If the matrix

X is sparse, the physical quantity Tr[ρX] =∑
i,j ρjiXij is contributed only from the se-

lected elements of ρij where Xij ̸= 0 and,

therefore, we should calculate only these el-

ements of the density matrix (ρij) and the

Green’s function (Gij) in the workflow of

Eq. (10). The above fact is a foundation of

the order-N property. (ii) The trace in Eq. (6)

is decomposed into

Tr[ρX] =
M∑
j

eTj ρXej , (11)

where ej ≡ (0, 0, 0, ...1j , 0, 0, ..., 0)
T is the j-th

unit vector. The quantity eTj ρXej is called

‘projected physical quantity’ and is computed

in parallelism. (iii) The Green’s function is

used also for calculating other quantities, such

as the density of states and the crystalline

orbital Hamiltonian population (See the next

section).

Figures 2 (a) and (b) show benchmarks.

The calculated systems are amorphous-like

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

17



102

103

104

105

107 108106105

El
ap

se
 ti
m
e 

(s
)

Number of atoms N

aCP

(a)

aCP
NCCS

105 106104
101

102

103

Number of processor cores P  

(b)

El
ap

se
 ti
m
e 

(s
)

(c)

Figure 2: (a) Benchmark for the order-N scaling. [3] The calculated system is amorphous-

like conjugated polymer (aCP), poly-(9,9 dioctyl fluorene). (b) Benchmark for the parallel

efficiency, the ‘strong scaling’, on the K computer with one hundred million atoms. [1, 2] The

calculated systems are aCP and an sp2-sp3 nano-composite carbon solid (NCCS). (c) A typical

π wavefunction in aCP [1]. The upper panel is a schematic figure for two successive monomer

units with R≡C8H17. The lower panel is a simulation result, where only C-C bonds are drawn

for eye-guide.

conjugated polymer (aCP), poly-(9,9 dioctyl-

fluorene) [3, 1, 2] and an sp2-sp3 nano-

composite carbon solid (NCCS). [4, 1]. Fig-

ure 2(a) shows that the calculation has the

order-N scaling property [3] in the aCP sys-

tems. Figure 2(b) shows the parallel efficiency

on the K computer with one hundred million

atoms. The MPI/OpenMP hybrid parallelism

is used. The results are shown for the NCCS

system with N = 103, 219, 200 [1] and the aCP

system with N = 102, 238, 848 [2]. The elapse

time T of the electronic structure calculation

for a given atomic structure is measured as the

function of the number of used processor cores

P (T = T (P )), from P = Pmin ≡ 32, 768 to

Pall ≡ 663, 552, the total number of processor

cores on the K computer. The parallel effi-

ciency is defined as α(P ) ≡ T (P )/T (Pmin) and

such a benchmark is called ‘strong scaling’ in

the high-performance computation field. The

measured parallel efficiency among the NCCS

systems is α(P = 98, 304) = 0.98, α(P =

294, 921) = 0.90 and α(P = Pall) = 0.73.

The measured parallel efficiency among the

aCP systems is α(P = 196, 608) = 0.98 and

α(P = Pall) = 0.56.

The high parallel efficiency stems not only

from the fundamental mathematical theory

but also from detailed techniques in the high-

performance computation field or the informa-

tion science [4]. These techniques do not affect

the numerical results. In particular, techniques

were developed in (i) programing techniques

for saving memory and communication costs

(ii) a parallel file I/O technique, and (iii) an

original visualization software called ‘VisBAR’

for a seamless procedure between the numeri-

cal simulation and visualization analysis (See

the next section).

Physical points are briefly discussed for the

calculated systems. A typical π wave function

of the aCP system is shown in Fig. 2(c). The

π wavefunction is terminated at the bound-

ary region between monomer units, unlike one

in an ideal chain structure, because the two

monomer units are largely twisted and the π

interaction between the monomer units almost

vanishes. The physical property of NCCS will

be discussed in the next section.
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4 Nano domain analysis of

nano-composite carbon

solid

This section picks out an application study on

nano-composite carbon solid (NCCS). A recent

preprint [2] gives a review of another recent

study with our code for battery-related mate-

rials [13] and earlier studies.

4.1 Analysis methods

In general, large-system calculations result in

complicated nano structures with many do-

mains and domain boundaries. Novel methods

are required for the post-simulation analysis of

these structures with huge electronic structure

data distributed among computer nodes.

Here such analysis methods are presented

with the real-space atomic-orbital representa-

tion of the Green’s function; crystalline orbital

Hamiltonian population (COHP) method [14],

and its theoretical extension called πCOHP

method [4].

The original COHP [14] is defined as

CIJ(ε) ≡
−1

π

∑
α,β

HJβ;IαImGIα;Jβ(ε+ i0), (12)

with the atom suffixes, I and J , and the orbital

suffixes, α and β. The energy integration of

COHP, called ICOHP, is also defined as

BIJ ≡
∫ ∞

−∞
f(ε)CIJ(ε)dε. (13)

Since a large negative value of BIJ (I ̸= J) in-

dicates the energy gain for the bond formation

between the (I, J) atom pair, BIJ is under-

stood as the local bonding energy. The sum of

BIJ is the electronic structure energy

Eelec ≡
∑
k

f(εk) εk =
∑
I,J

BIJ . (14)

A theoretical extension of COHP, πCOHP,

is proposed [4]. Since the present Hamiltonian

contains s- and p-type orbitals, off-site Hamil-

tonian elements are decomposed, within the

Slater-Koster form, into σ and π components

(HJβ;Iα = H
(σ)
Jβ;Iα +H

(π)
Jβ;Iα). From the defini-

tions, the off-site COHP and ICOHP are also

decomposed into the σ and π components

CIJ(ε) = C
(σ)
IJ (ε) + C

(π)
IJ (ε), (15)

BIJ = B
(σ)
IJ +B

(π)
IJ . (16)

The decomposed terms are called ‘σ(I)COHP’

and ‘π(I)COHP’ and the original (I)COHP is

called ‘full (I)COHP’.

By the σ(I)COHP and π(I)COHP, σ and π

bonds can be distinguished energetically. A

large negative value of B
(σ)
IJ or B

(π)
IJ indicates

the formation of a σ or π bond between the

atom pair, respectively.

The analysis method is suitable to the

present massively parallel order-N method, be-

cause the full, σ, and π(I)COHP can be calcu-

lated from the Green’s function without any

additional inter-node data communication.

4.2 Nano domain analysis

The (π)COHP analysis method is applied to an

early-stage study [4] on the formation process

of the nano-polycrystalline diamond (NPD), a

novel ultrahard material produced at 2003 [15].

NPD is obtained by direct conversion sinter-

ing process from graphite under high pressure

and high temperature and has characteristic

10-nm-scale lamellar-like structures. NPD is of

industrial importance, because of its extreme

hardness and strength that exceed those of

conventional single crystals. Sumitomo Elec-

tric Industries. Ltd. began commercial pro-

duction from 2012. Similar properties are ob-

served also in nano-polycrystalline SiO2 [16].

Our simulation is motivated by the in-

vestigation of possible precursor structures

in the formation process of NPD and the

structures should be nano-scale composites of

sp2 (graphite-like) and sp3 (diamond-like) do-

mains.

Figures 3 shows the result of nano-domain

analysis on sp2-sp3 nano-composite carbon

solid (NCCS) [4]. The system is a result
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Figure 3: Nano-domain analysis of sp2-sp3 nano-composite carbon solid (NCCS) visualized with

the COHP or πCOHP analysis [4]. The sp2 (graphite-like) and sp3 (diamond-like) domains are

visualized in (a), while only the sp2-like domains are visualized in (b). A closeup of a sp2-sp3

domain boundary is shown in (c). The atoms at a typical domain boundary are shown in (d).

of our finite-temperature molecular-dynamics

simulation with a periodic boundary condi-

tion. The (π)COHP analysis is used, because

sp2 domains can be distinguished from sp3 do-

mains by the presence of π bonds. Figures

3(a) and (b) are drawn by the bond visual-

ization by the full ICOHP and the πICOHP,

respectively. In Fig. 3(a), a bond is drawn for

an (I, J) atom pair, when its ICOHP value

satisfies the condition BIJ < Bth ≡ −9 eV.

Bond visualization by the full ICOHP indicates

the visualization of both sp2 and sp3 bonds.

In Fig. 3(b), on the other hand, a π bond is

drawn, when its π ICOHP value satisfies the

condition B
(π)
IJ < B

(π)
th ≡ −1.5 eV. Bond visu-

alization by the πICOHP indicates the visual-

ization of only sp2 bonds.

The analysis concludes that layered domains

are sp2 domains and non layered domains are

sp3 domains. Figure 3(c) is a close-up of a do-

main boundary between sp2 and sp3 domains,

which shows that a layered domain forms a

graphite-like structure and a non layered do-

main forms a diamond-like structure, as ex-

pected from the (π)ICOHP results.

A typical domain interface, schematically

shown in Fig. 3(d), is analyzed for the nature

of each bond, so as to clarify how the (π)COHP

analysis works well. The atom labeled ‘A’ in

Fig. 3(d) is focused on. The atom has three

bonds that are painted blue or red in Fig. 3(d).

The (π)ICOHP analysis shows that the two

‘blue’ bonds contain π bonds, while the ‘red’

bond dose not. The analysis result is consis-

tent to the fact that the ‘blue’ bonds are those

within an sp2 domain, while the ‘red’ bond is

an ‘interface’ bond or a bridge between sp2 and

sp3 domains.

5 Summary and future as-

pects

The present paper reports our methods and

results of large-scale electronic structure cal-

culations based on our novel linear algebraic
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algorithms. The mathematical algorithms are

applicable to various computational physics

problems among and beyond electronic struc-

ture calculations. A high parallel efficiency was

observed for one-hundred-million-atom ( 100-

nm-scale ) systems with up to all the built-in

cores of the K computer. An application study

of nano-domain analysis on nano-composite

carbon solids is shown as an example.

Finally, three future aspects are discussed;

(I) Material: The present methodologies are

general and an important application should

be one for organic materials, since non-ideal

100-nm-scale structures are crucial for de-

vices. Preliminary calculations are shown for

amourphous-like conjugated polymers in this

paper. (II) Theory: Large-system calculations

for transport and optical properties should

be next stages and these calculations are re-

duced to large-matrix problems beyond the

present formulations. A central mathemati-

cal issue is the internal eigen-value problem

in which we calculate only the selected eigen

values and eigen vectors near the HOMO and

LUMO levels or the Fermi level. Recently, a

novel two-stage algorithm was proposed for the

internal eigen-value problem with Sylvester’s

theorem of inertia [17]. (III) Code develop-

ment style: As shown in Fig. 1, novel mathe-

matical solvers can be shared as middlewares,

among many application softwares or compu-

tational physics fields, because of their gener-

ality. ‘Mini applications’ should be also de-

veloped with the solvers, so as to clarify their

mechanism and efficiency. An alpha version

of such a mini application with eigen-value

solvers was prepared and is now being ex-

tended [18]. Such solvers and mini applica-

tions will play a crucial role in the Application-

Algorithm-Architecture co-design among next-

generation or exa-scale computational physics.
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