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Strong electron correlation is a source of
rich and marvelous phenomena, functions and
concepts in condensed matter. However, it
has hampered reliable treatments by theoreti-
cal approaches for a long time and still con-
tinues to be a challenge, where the mean-
field and single-particle type approximations
do not work in many cases. Numerical ap-
proaches offer promising tools for this chal-
lenge, while the numerical accuracy has to
be kept sufficiently high because various or-
ders are severely competing and the systems
are often under large quantum fluctuations.
Partly thanks to rapid progress in computer
power, several numerical methods have been
developed for this purpose recently. Here,
we focus on the cluster extension of the dy-
namical mean-field theory (CDMFT) and the
multi-variable variational Monte Carlo method
(mVMC). The CDMFT has been applied to
understanding of the mechanism of the high-
temperature superconductivity for the model
of the cuprate superconductors, particularly to
reveal the origin of the pseudogap phenomena.
The CDMFT has made it possible to clarify
physics of the anomalous metallic phase of the
Hubbard model in two dimensions as relevant
to the cuprates. The structure of the pseudo-
gap revealed here as a nodeless gap is essen-
tially important in understanding the super-
conducting mechanism as well. The mVMC
has been applied to understand physics of an-
other family of high-Tc superconductors, iron-
based superconductors, where the role of elec-
tron correlation effects had been controversial
before the studies we review here. A key role

of the strong electron correlation has become
revealed with the help of supercomputers. The
topological phases are the subject of exten-
sive studies for two-dimensional electrons un-
der strong magnetic fields as well as for materi-
als with strong spin-orbit interactions. Recent
mVMC calculations revealed an intriguing in-
terplay of the spin-orbit interaction and the
electron correlation effect. The possibility of
the topological phase purely driven by the elec-
tron correlation effect without spin-orbit inter-
actions is another hot subject of the numerical
approaches. We here review these numerical
studies at frontiers of efforts to understand na-
ture of strongly correlated electrons.

1 Pseudogap in high-Tc

cuprates

Despite the intensive studies in the last few
decades, high-Tc cuprate superconductors still
defy a comprehensive understanding. A key
to the superconducting mechanism is in the
anomalous “normal state”, from which the
superconductivity emerges. In particular, in
underdoped cuprates, various experimental
probes have observed a gap (pseudogap) be-
havior in the single-electron excitation spectra
as well as in the two-particle responses such as
magnetic and transport measurements at tem-
peratures above Tc. Although vast amounts
of experimental data have been accumulated
to date, the origin of the pseudogap and its
relationship to the superconductivity are still
controversial.
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From a theoretical point of view, the dif-
ficulty in studying the cuprates is in the
fact that the superconductivity occurs in the
carrier-doping region sandwiched by the Mott
insulating state and the Fermi liquid state,
which are the states of two different limiting
cases. The former is a manifestation of the lo-
calizing nature of the strongly correlated elec-
trons while the latter manifests the itinerancy
of the electrons. This requires a theory for
the cuprates to describe the dual character of
the electrons simultaneously in a unified fash-
ion. In terms of the quantum field theory, the
itinerancy of the electrons is described by the
presence of poles of the single-electron Green’s
function G at the Fermi level; that is, a metal
is defined by the presence of the Fermi sur-
face. On the other hand, the locality of the
electrons is described by the presence of ze-
ros of G (i.e., poles of the self-energy Σ) at
the Fermi level, as it induces a gap in the ex-
citation spectra [1]. Thus the duality of the
electrons is translated into the presence of (or
proximity to) both poles and zeros in G at low
energy.

In order to take into account both poles
and zeros at the same time, we need a non-
perturbative approach. The cluster dynami-
cal mean-field theory (CDMFT) [2,3] is one of
such schemes with a capability to provide in-
formation on dynamical properties. It maps in
a self-consistent way the original lattice model,
like the Hubbard model, onto an effective clus-
ter impurity model comprised of a finite-size
interacting cluster and infinite number of non-
interacting bath sites. The cluster impurity
problem is then solved by an accurate numer-
ical scheme such as the exact diagonalization
method and the quantum Monte Carlo (QMC)
method. The CDMFT takes into account all
the correlation effects within the cluster, so
that it can capture in an accurate way the
physics caused by short-range electronic cor-
relation effects.

Using the CDMFT, we have explored the
two-dimensional Hubbard model in the region
of the hole- or electron-doped Mott insula-
tors. At small dopings and at zero tempera-
ture, both poles and zeros coexist at the Fermi
level, which is a new metallic state of matter.

We have shown that its electronic structure in-
deed accounts for various experimental results
found in the anomalous metallic (pseudogap)
state of the cuprates (Sec. 1.1). Our result fur-
thermore shows an unprecedented momentum
structure of the pseudogap on the positive-
energy side, which has been elusive in experi-
ments (Sec. 1.2).

1.1 Pole-zero structure of Green’s
function

We have first studied the zero-temperature
electronic structure underlying the pseudogap
state, by applying the CDMFT to the two-
dimensional Hubbard model on the square lat-
tice [4,5]. We employed a 2× 2 square cluster,
and solved the effective cluster impurity prob-
lem with the exact diagonalization method. In
order to capture the electronic structure in the
full momentum space, we took advantage of a
truncated Fourier transformation of the cumu-
lant [6], M = (ω + μ − Σ)−1, where ω, μ,Σ
are frequency, chemical potential and the self-
energy, respectively. Since the cumulant is
a well localized quantity in the proximity to
the Mott insulator, the Fourier transformation
truncated at the cluster size is expected to give
a good approximation in that region. This
argument was indeed confirmed by our subse-
quent study on the cluster-size dependence, up
to 4× 4, with the CDMFT + continuous-time
QMC (CTQMC) [7] method [8].

Figure 1 (reproduced from Fig. 2(a) in
Ref. 4) shows the electronic structure which we
obtained in the region slightly hole-doped to
the Mott insulator. Around the middle (red)
G = 0 surface, spectral function is small be-
cause of the large scattering (imaginary part of
the self-energy) there. Hence this surface in-
duces a gap behavior in the spectral function,
which is identified with the pseudogap found
in preceding CDMFT studies [9,10]. Since the
G = 0 surface crosses the Fermi level around
(π, π), its large real part of the self-energy de-
forms the Fermi surface into a pocket around
the nodal point. The presence of the singu-
lar surface of the self-energy at the Fermi level
indicates that a non-Fermi-liquid ground state
underlies the pseudogap phase. The metallic
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Figure 1: Pole-zero structure of G underlying
pseudogap state at temperature T = 0 for on-
site interaction U = 8t and 9% hole doping
to the half filling of two-dimensional Hubbard
model, calculated by CDMFT + exact diago-
nalization method.

state with coexisting pole and zero surfaces
also connects the electronic structure of the
Mott insulating state at zero doping, where
only a zero surface exists around the Fermi
level, and the Fermi liquid state at large dop-
ings, where only a pole surface exists.

Furthermore, the spectral function calcu-
lated for this pole-zero structure shares many
anomalies with what have been experimen-
tally observed in the pseudogap state of the
cuprates [5]. The anomalies are attributed to
the interference effect between the poles and
zeros in the energy-momentum space, that is,
the large self-energy around the zero surface
deforms and broadens the pole surface into
spectra which are out of the standard theory of
metals. For example, the Fermi arc [11], back-
bending dispersion [12], and the electron-hole
asymmetry [13–16] are well reproduced by our
CDMFT results.

1.2 s-wave pseudogap

Another remarkable feature of the structure in
Fig. 1 is that the gap (pseudogap) opens ev-
erywhere in the momentum space [4, 5]. This

is distinct from the conventionally-assumed d-
wave structure of the pseudogap. Neverthe-
less, the calculated spectra are fully consistent
with hitherto known ARPES experimental re-
sults, as we have mentioned in the previous
section, since the gap below the Fermi level
closes in the nodal direction. Namely, while
the gap is around the Fermi level in the antin-
odal region, it shifts to higher energy as going
to the nodal region and eventually locates it-
self at above the Fermi level in the nodal direc-
tion. We call this “s-wave” pseudogap in the
sense that the gap amplitude is finite in the
whole momentum space, although the strong
momentum dependence of the energy location
of the gap discriminates it from the standard
s-wave gap structure.

Since our s-wave pseudogap structure is ob-
tained by an accurate numerical simulation
without any assumption on the symmetry or
structure of the pseudogap, we took the result
seriously and reexamined whether the com-
mon belief that the pseudogap is d-wave is
really founded. In fact, in contrast to the
superconducting gap, whose d-wave symme-
try is firmly evidenced by the SQUID exper-
iments [17,18], there are no phase-sensitive ex-
perimental evidences on the d-wave symmetry
of the pseudogap. The common belief relies
on the ARPES results, which have observed a
d-wave-like structure of the pseudogap. How-
ever, as already discussed above, it cannot be
an evidence since only with the occupied spec-
tra observed by ARPES we cannot distinguish
the d-wave and our s-wave pseudogaps. Since
the symmetry of the pseudogap is a building
block of a number of phenomenological theo-
ries, the distinction should play a crucial role
in understanding the high-Tc superconductiv-
ity.

In order to distinguish the d-wave and our
s-wave pseudogaps in experiments, we need in-
formation on the spectra above the Fermi level,
especially in the nodal region of the momen-
tum space. The momentum structure of the
unoccupied spectra has, however, been elusive
in experiments. In Ref.19, we explored this
dark (unoccupied) side, by combining the elec-
tronic Raman spectroscopy experiments and a
theoretical analysis based on the cluster dy-
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namical mean-field theory. The advantage of
the Raman spectroscopy is that it reflects both
the occupied and unoccupied parts of the spec-
tra and has a selectivity of momentum area
through exploiting the photon polarizations.
In the CDMFT analysis, since a better mo-
mentum resolution is required, we employed a
16-site cluster and solved the effective cluster
impurity problem with the CTQMC method,
which also allows us to study the properties at
finite temperatures.

Then we observed the following anomalous
behavior in the temperature dependence of the
Raman response for underdoped samples. (i)
As temperature is lowered from a high tem-
perature, a depression at low frequencies, due
to the pseudogap opening, first occurs in the
antinodal response. (ii) At a lower tempera-
ture, the nodal response begins to decrease in
an intermediate-frequency region while it in-
creases at around zero energy. These behaviors
were indeed well reproduced by our CDMFT
Raman calculation, and thereby attributed to
the s-wave pseudogap state: (i) is consistent
with the fact that the pseudogap in the single-
particle spectra opens first in the antinodal re-
gion, and (ii) accords with that the pseudo-
gap in the nodal region opens at a lower tem-
perature and above the Fermi level while the
quasiparticle peak develops at the Fermi level.
The s-wave pseudogap furthermore explains
well the electron-hole asymmetry observed in
recent ARPES [15, 16] and STM [20] experi-
ments, which would be difficult to be explained
within the d-wave pseudogap scenario.

Thus there are mainly two reasons to con-
sider the pseudogap to be the s wave. One
is the fact that microscopic numerical simula-
tions, when taking into account all the short-
range correlation effects, produce the s-wave
structure. The other is the extensive consis-
tency with the experimental observations dis-
cussed above. The results impose a strong con-
straint on our understanding of the pseudogap
and of the high-Tc superconducting mechanism
in the cuprates.

2 Ab initio studies on iron-
based superconductors

2.1 Introduction

Iron-based superconductors were discovered in
2008 [21] and the highest critical tempera-
ture became above 55 K. It has been shown
that most of mother materials of the iron-
based superconductors are antiferromagnetic
metals [22]. This is in sharp contrast with
the other high-Tc superconductors, namely the
cuprates, whose mother materials are antifer-
romagnetic Mott insulators, induced by the
strong electron correlation. Thus, at the initial
stage of the study, it was not clear whether the
electronic correlation is weak or strong in the
iron-based superconductors, although it is one
of the most important factor to understand the
origin of the high-Tc superconductivity.

To clarify the strength of the electronic cor-
relation and its effects on electronic structures
such as magnetism and superconductivity in
the iron-based superconductors, we applied ab
initio downfolding scheme [23] to the iron-
based superconductors. In this scheme, the
global band structures are calculated based on
the density functional theory and then the low-
energy effective Hamiltonian is obtained by us-
ing constrained random phase approximation
(cRPA). Finally, we solve the low-energy effec-
tive model by employing a high-accuracy low-
energy solver such as the multi-variable varia-
tional Monte Carlo (mVMC) method and clar-
ify the electronic properties of the target ma-
terials in a fully ab initio way. In this review,
we first explain the basic properties of the low-
energy effective model derived for the iron-
based superconductors. Then, we will show
how the electronic structures of the iron-based
superconductors are obtained by solving the
low-energy effective models.

2.2 Model

In this report, we consider four iron-based
superconductors, namely, LaFePO, LaFeAsO,
BaFe2As2, and FeTe. The obtained low-energy
effective model for each iron-based supercon-
ductor is a five-orbital Hubbard model and its
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form is given as

H = H0 +Hint (1)

H0 =
∑
σ

∑
i,j

∑
ν,μ

ti,j,ν,μa
†
i,ν,σaj,μ,σr (2)

Hint =
1

2

∑
σ,σ′,i,ν,μ

{
Ui,i,μ,νa

†
i,ν,σa

†
i,μ,σ′ai,μ,σ′aiν,σ

+ Ji,i,μ,ν
(
a†i,ν,σa

†
i,μ,σ′ai,ν,σ′ai,μ,σ

+ a†i,ν,σa
†
i,ν,σ′ai,μ,σ′ai,μ,σ

)}
, (3)

where a†i,ν,σ (ai,ν,σ) is a creation (annihilation)
operator of an electron with spin σ on the νth
maximally localized Wannier orbital at the i-
th site. ti,j,ν,μ contains single-particle levels
and transfer integrals. Ui,i,ν,μ and Ji,i,ν,μ are
screened Coulomb and exchange interactions,
respectively. In the actual calculations, we
used the transfer integrals up to the fifth neigh-
bors, which well reproduce the band structures
by the local density approximation. Off-site in-
teractions are ignored since those are less than
a quarter of the onsite parameters.

The derived effective models are defined
in three spatial dimensions at this stage.
To explicitly reflect the two-dimensionality
of the iron-based superconductors, we per-
formed dimensional downfolding [24] and ob-
tained purely two-dimensional low-energy ef-
fective models. Our results of the ab initio di-
mensional downfolding for each compound in-
dicate that the screenings from the other lay-
ers reduce all the Coulomb interactions uni-
formly [24]. Based on our calculated ab initio
results, we subtract the constant values from
Uν,μ’s in the 3D models [25] as follows; 0.44 eV
for LaFePO, 0.41 eV for LeFeAsO, 0.38 eV for
BaFe2As2, and 0.40 eV for FeTe, respectively.
We note that the exchange interactions Jν,μ
are not significantly changed by the screenings
from the other layers [24]. Details of the in-
teraction as well as the single-particle param-
eters that we used are shown in the literatures
[24–27].

From the ab initio derivation of the interac-
tion parameters, we have found that family de-
pendence of the interaction parameter can be
well scaled by the single parameter λ [25–27],
which is defined as H = H0 + λHint, where

λ = 1 corresponds to the ab initio parameters
for LaFeAsO. By changing λ, we successfully
reproduce the interaction parameters for other
materials from those of LaFeAsO. For example,
by taking λ � 0.8, we reproduce the interac-
tion parameters for LaFePO.

2.3 Method

To clarify the electronic structures of the ef-
fective models, we employ the mVMC method.
Details of the mVMC methods are given in the
literature [28]. In the mVMC calculations, we
study the ground state properties by employ-
ing a generalized Bardeen-Cooper-Schrieffer
(BCS) type wave function with the quantum
number projection and the Gutzwiller and Jas-
trow factors;

|ψ〉 = PGPJLS=0|φpair〉. (4)

Here, LS=0 is the spin projection opera-
tor to the total spin S = 0 subspace; PG

and PJ are the Gutzwiller and Jastrow fac-
tors, respectively [28]. The spin projec-
tion is performed onto the S = 0 sin-
glet subspace. The Gutzwiller factor pun-
ishes the double occupation of electrons by
PG = exp(−∑

i,ν giνniν↑niν↓) where niνσ =

a†iνσaiνσ. The Jastrow factor is intro-
duced up to the next-nearest-neighbor sites as
PJ = exp(−1

2

∑
i,j vijνμniνnjν), where niν =∑

σ niνσ. The one-body part |φpair〉 is the
generalized pairing wave function defined as
|φpair〉 = (

∑5
ν,μ=1

∑Ns
i,j=1 fijνμa

†
iν↑a

†
iμ↓)

Ne/2|0〉,
where Ne (Ns) is the number of electrons
(number of sites). In this study, we restrict the
variational parameters, giν , vijνμ to have a 2×1
structure, and fijνμ to have a 2× 2 sublattice
structure. The number of variational parame-
ters are 10 for giν , 220 for vijνμ, and 100Ns for
fijνμ. All the variational parameters are simul-
taneously optimized by using the stochastic re-
configuration method [28, 29]. Our variational
wave function |ψ〉 can flexibly describe super-
conducting (SC), antiferromagnetic (AF), and
paramagnetic (PM) phases as well as their fluc-
tuations on an equal footing. The calculations
were done up to 8× 8 sites.

5

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

27

nog
長方形



 0.6  0.8  1  1.2  1.4
 0

 0.5

 1

 1.5

 2

 2.5

 3

λ ( strength of interaction )

★
★

★

★
★

★

★
★

LaFePO

LaFeAsO
BaFe2As2

FeTe

★

m
 s

Figure 2: Interaction dependence of magnetic
ordered moment ms [27]. Magnetic ordered
moment of each ab initio model is represented
by (yellow) diamond while experimental mag-
netic ordered moments for several materials
are represented by (blue) stars. By changing
the interaction parameter λ for LaFeAsO, we
obtain the λ dependence of the magnetic or-
dered moment [closed (red) circles].

2.4 Results

By using this method, we first clarify that
the low-energy effective models can reproduce
the family dependence of the magnetic ordered
moment ms [27], which is defined as

Siν =
1

2

∑
σ,σ′

a†iν,σσσσ′aiν,σ′ , (5)

m(qpeak)
2 =

4

3N2
s

∑
i,j,ν,μ

〈Siν · Sjμ〉, (6)

ms = lim
Ns→∞

m(qpeak), (7)

where σ represents Pauli matrix, qpeak is set
to qpeak = (0, π) (stripe magnetic order).
As shown in Fig. 2, We calculated the mag-
netic ordered moment for LaFePO, LaFeAsO,
BaFe2As2, and FeTe and plot them at corre-
sponding λ, which is a measure of the strength
of the interaction parameters. The diverse
family dependence of the magnetic ordered
moment is well explained from the system-
atic dependence on the strength of the effec-
tive electronic interactions. Our calculation
also clarifies that LaFeAsO is very close to an
antiferromagnetic quantum critical point and

 0
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n
1.0(d  ,δ=-1)  1.2(d  ,δ=0)  0.6  0.8  1  1.2 1.4

λ

 1

 2

 3

5
6

Stripe
G-type

m s

Figure 3: Magnetic ordered moment ms in
the plane of λ and doping concentration δ [27].
The data are plotted in the cross-sections for
λ=1 as well as for δ=0. It shows a peak at
d5 (δ=−1.0) and decreases monotonically over
d6 (δ=0), which forms a large half-dome struc-
ture peaked at d5. The mVMC results of the
ab initio models are shown by (black-framed
yellow) diamonds. There exist two first-order
transitions (black dashed lines), one indicated
by the jumps in the ordered moment around
δ∼0.17 and the other at the transition between
the G-type and stripe around δ∼−0.22, which
signals large charge fluctuations under phase-
separation effects. In the present short-ranged-
interaction model, the phase separation indeed
occurs in the gray shaded regions.

this is the origin of the small magnetic ordered
moment observed in the experiment.

In Fig. 3, we show the global phase dia-
gram in the plane of interaction λ and doping
concentration δ [27]. Undoped case (six elec-
trons in five orbitals, i.e, d6 configuration) cor-
responds to the n = 1.2 (red) plane. At λ = 1,
we change the electron density and examine
the intrinsic doping effect. By doping elec-
trons, magnetic order vanishes at around 20%
doping. In contrast to this, by doping holes, we
find unexpected behaviors; magnetic ordered
moment becomes larger and larger, and it has a
peak at the d5 configuration. At d5 configura-
tion, the checkerboard-type (G-type) antiferro-
magnetic Mott insulator appears. This result
indicates that the iron-based superconductors
are located on the foot of large dome structures
originating from the d5 Mott insulator.

6
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Here, based on our ab initio study, we com-
pare the iron-based superconductors with the
other high-Tc superconductors, the cuprates.
Both materials are under the proximity ef-
fects of the Mott insulator. However, in the
iron-based superconductors, due to the multi-
orbital effects and the large Hund’s rule cou-
pling, the antiferromagnetic dome ranges from
d5 to d6. This is in sharp contrast with
the cuprates, where the proximity effect of
the Mott insulator collapses with a small um-
brella below 20-30% doping around d9. In the
iron-based superconductors, at the foot of the
large d5 Mott insulator, several intriguing phe-
nomena such as high-Tc superconductivity are
found. It is an intriguing issue to reveal the re-
lation between the proximity effects of the d5

Mott insulator and the high-Tc superconduc-
tivity.

3 Correlated Topological In-
sulators

Emergence of topologically-protected edge
states, which are not affected by impurities
or imperfection in crystalline electron systems,
has been a central issue of quantum Hall in-
sulators realized in two-dimensional electron
gases under strong magnetic fields.

Together with pioneering works [30–33], the-
oretical prediction of quantum spin Hall in-
sulators by Kane and Mele [34] has triggered
intensive experimental and theoretical studies.
Now, the emergence of topologically-protected
edge (or surface) states has been recognized as
rather universal phenomena: A certain class
of insulators, including well-studied polymer
polyacetylene and thermoelectric compound
Bi2Te3, has protected edge/surface states ir-
respective of their spatial dimensions [35–38].

For essentially non-interacting electron sys-
tems, these quantum phases with protected
surface states have been classified by using
symmetric properties of these systems [36–38].

However, studies on topological states of
strongly-correlated electron systems are still
ongoing. There are mainly three issues of
the studies on topologically non-trivial gapped
phases of strongly correlated electron systems:

1. Correlation effects on topological insu-
lators classified in corresponding non-
interacting systems.

2. Topological insulators induced by spon-
taneous symmetry breakings, often called
topological Mott insulators.

3. Emergent topological phases of many-
body systems that do not appear in
non-interacting systems, such as Hal-
dane phases in one-dimensional integer-
spin Heisenberg models.

Here, we reiew our numerical study [39]
on the first issue in the above list. By us-
ing mVMC, we studied a typical model for
topologically non-trivial correlated insulators
called Hubbard-Kane-Mele model detailed be-
low. The topologically non-trivial phase can
in principle be probed by directly calculating
the Z2 topological number. However, it is a
formidable computational task. Alternatively
and equivalently, the gapless edge probed by
the Drude weight concomitant with the gapful
bulk state on the cylinder ensures the existence
of the topologically nontrivial phase [34]. Our
VMC results on the edge Drude weights re-
veal that the electron correlations enhance spin
transports at the edge while charge transports
are suppressed. We also give a brief summary
of our studies on the second issue.

3.1 Hubbard-Kane-Mele model

We employ a tight binding hamiltonian on the
two-dimensional honeycomb lattice proposed
by Kane and Mele [34] with inclusion of the
spin-orbit coupling as complex hopping terms
and the on-site Coulomb interaction, and with-
out the Rashba term to study electron correla-
tion effects on the topological insulator. Here-
after we call this simple model the Hubbard-
Kane-Mele model and it is defined as

Ĥ = ĤKM + U
∑
I

n̂I↑n̂I↓, (8)

with

ĤKM = −t
∑
〈I,J〉σ

ĉ†Iσ ĉJσ

+ it2
∑

〈〈I,J〉〉αβ
νij ĉ

†
Iα[σz]αβ ĉJβ , (9)
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where ĤKM is the Kane-Mele hamiltonian,
t (t2) is the nearest-neighbor (next-nearest-
neighbor) hopping, and U is the onsite Hub-
bard interaction. Here we define νij=
di ×

dj/

∣∣∣
di × 
dj

∣∣∣, and I=(i, a) (a=A,B) (see

Fig.4(a)).

5x3x2
5x5x2
7x3x2

15x3x2
15x5x2

15x3x2
15x5x2
7x3x2
5x3x2
5x5x2

5x3x2 spin

5x3x2 charge
7x3x2 charge

VMC

spincharge

 0  1  2

U/t

 0

 1

 2

D
c/

s 
/D

c/
s(U

=0
) LxxLyx2

 2.5

VMC

UHF 

di
dj

I=(i,A) J=(j,A)

I =(i,B)’ J =(j,B)’

ax

ay

(a)

(b)

Figure 4: (a) Honeycomb lattice on which the
Hubbard-Kane-Mele model is defined. (b) U
dependence of charge and spin Drude weights
renormalized with the Drude weight for U = 0.
For comparison, we also show the results of
a partially unrestricted Hartree-Fock approxi-
mation with prohibition of x and/or y compo-
nents of spin densities, denoted as UHF in the
figure.

To carry out VMC calculations of the
Hubbard-Kane-Mele model, we employ a vari-
ational wave function defined as

|ψ〉 = PGPJ|φpair〉, (10)

where PG and PJ are the Gutzwiller and
Jastrow factor, respectively. We impose the
Gutzwiller factor on all the sites, whereas
introduce the Jastrow factor only along the
zigzag edges. The one-body part |φpair〉 is
a generalized pairing wave function |φpair〉 =[∑Ns

i,j=1 fijc
†
i↑c

†
j↓
]N/2|0〉 with fij being the

complex variational parameters. In this study,

we allow fij to have 2-sublattice (2 × Ly-
sublattice) structure or equivalently we have
2× 2×Ns (2× Ly × 2× Ly × Lx) variational
parameters for the torus (cylinder). All the
variational parameters are simultaneously op-
timized by using the stochastic reconfiguration
method generalized for complex variables.

3.2 Charge and Spin Drude Weights

Charge and spin Drude weights are calculated
by introducing vector potentials as the Peierls
factors,

tIJσ → tIJσ exp[i 
Aσ · 
rIJ ], (11)

where 
rI = nI
ax + mI
ay and 
rIJ = 
rI − 
rJ .
Here nI and mJ are integers, and lattice vec-
tors are 
ax and 
ay (see Fig.4(a)). By introduc-
ing these Peierls factors, the Drude weights for
the charge and spin channels, Dc and Ds, re-
spectively, are calculated from the energy stiff-
ness

Dc =
1

2

d2E( 
A↑, 
A↓)
d| 
A|2

∣∣∣∣∣
�A↑= �A↓=| �A|

, (12)

and

Ds =
1

2

d2E( 
A↑, 
A↓)
d| 
A|2

∣∣∣∣∣
�A↑=− �A↓=| �A|

, (13)

where E = 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉 is the total energy.
If we introduce spin-dependent vector poten-
tials, 
Aσ=σ 
A, we obtain the Drude weight
for the spin channel, namely the spin Drude
weight. To clarify the edge state, we employ a
cylinder with sizes Ns=Lx×Ly×2, for the hon-
eycomb lattice with two sites on a unit cell and
the periodic (free) boundary conditions in the
x (y) directions. We have confirmed that the
employed width Ly is large enough to make
isolated two edges at the two free boundaries
at y = 0 and y = Ly. For the bulk properties
we employ the torus, where the boundary is
periodic for all the directions .

We show our VMC results for the Drude
weights for the Hubbard-Kane-Mele model on
the cylindrical geometry with two zigzag edges
along the x-direction in Fig.4(b). The electron
correlations enhance the spin Drude weight Ds
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of the edge states while the electron correla-
tions suppress the charge Drude weight Dc.
In other words, the electron-electron interac-
tions induce localization of the charge degrees
of freedom and enhance the spin conduction.
Our results suggest that pure spin conductions
are induced by the electron correlation at the
edge/surface of the topological insulators.

3.3 Topological Mott insulator

Both in two and three dimensions, the topolog-
ical insulators are typically realized in the pres-
ence of strong spin-orbit interaction [40–42].
On the other hand, it was suggested that the
extended Hubbard model on the honeycomb
lattice can generate an effective spin-orbit in-
teraction from a spontaneous symmetry break-
ing at the Hartree-Fock mean-field level and re-
sults in the topologically non-trivial phase [43].
Similar phenomenon has also been proposed on
the kagomé, diamond and pyrochlore lattices
[44–46]. A common property is that the lat-
tice models which are semimetals in the single
particle problem may have topologically non-
trivial insulator phases caused by the Coulomb
interaction. Therefore, these states are called
topological Mott insulators. These proposals
offer the possibility of the realization of the
topological insulator even in the absence of the
spin-orbit interaction.

Theories of the topological Mott insulators
also opens a possibility of studying quantum
phase transitions with novel criticality [47].
Contrary to the ordinary phase transitions,
where the universality class is determined by
spatial dimension and the structure of bro-
ken symmetries, criticality of the transition to
the topological Mott insulator depends on the
band dispersion near the Fermi point charac-
teristic of the zero-gap semiconductors. In the
topological Mott insulators, the criticality of
the system is calculated from a free energy ex-
pansion

f [ζ]− f [0] � AQ+BV ζ2, (14)

Q =

∫ Λ

0
kd−1dk

[
−
√
aV 2ζ2 + bk2n + bkn

]
.(15)

Here, A,B, a, b are constants depending on the
system, V is the control parameter, ζ is the

order parameter, Λ is the cut-off wave length,
d is the spatial dimension of the system, and
n is the exponent which determines the band
dispersion near the Fermi point. Therefore,
the topological change of the Fermi surface
leads to a free-energy singularity |ζ|d/n+1, and
generates unconventional universalities charac-
terized by mean-field critical exponents β =
n/(d− n) and δ = d/n.

For more quantitative estimate of the criti-
cal exponents by considering fluctuations, for
example, fermionic renormalization group [48]
or a renormalization group method applicable
to non-analytic free-energy expansions, which
may give a modification to our analysis, will be
helpful and are left for future studies. These
may give a solution for dynamical exponents
and upper critical dimensions of the topo-
logical Mott transition, and hence give the
estimate for quantitative corrections of the
other critical exponents as well. Furthermore,
strong quantum fluctuations expected around
the present topological Mott transition may of-
fer a basis for unprecedented quantum phases
mediated by the spin-orbitons.
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A.-M. S. Tremblay,M. Civelli, and G.
Kotliar: Phys. Rev. B 73 (2006) 165114.

[10] A. Macridin, M. Jarrell, T. Maier, P. R.
C. Kent, and E. D’Azevedo: Phys. Rev.
Lett 97 (2006) 036401.

[11] M. R. Norman, H. Ding, M. Randeria, J.
C. Campuzano, T. Yokoya, T. Takeuchi,
T. Takahashi, T. Mochiku, K. Kadowaki,
P. Guptasarma, and D. G. Hinks, Nature
392 (1998) 157.

[12] A. Kanigel, U. Chatterjee, M. Randeria,
M. R. Norman, G. Koren, K. Kadowaki,
and J. C. Campuzano: Phys. Rev. Lett.
101 (2008) 137002.

[13] T. Hanaguri, C. Lupien. Y. Kohsaka, D.-
H. Lee, M. Azuma, M. Takano, H.Takagi,
and J. C. Davis: Nature 430 (2004) 1001.

[14] P. W. Anderson and N. P. Ong: J. Phys.
Chem. Sol. 67 (2006) 1.

[15] H.-B. Yang et al.: Nature 456 (2008) 77.

[16] M. Hashimoto et al.: Nature Phys. 6
(2010) 414.

[17] D. A. Wollman, D. J. Van Harlingen, W.
C. Lee, D. M. Ginsberg, and A. J. Leggett:
Phys. Rev. Lett. 71 (1993) 2134.

[18] C. C. Tsuei et al.: Nature 387 (1997) 481.

[19] S. Sakai et al.: Phys. Rev. Lett. 111
(2013) 107001.

[20] A. Pushp et al.: Science 324 (2009) 1689.

[21] Y. Kamihara, T. Watanabe, M. Hirano,
and H. Hosono: J. Am. Chem. Soc. 130
(2008) 3296.

[22] G. R. Stewart: Rev. Mod. Phys. 83 (2011)
1589.

[23] For a review, see T. Miyake and
M. Imada: J. Phys. Soc. Jpn. 79 (2010)
112001.

[24] K. Nakamura, Y. Yoshimoto, Y. Nohara,
and M. Imada: J. Phys. Soc. Jpn. 79
(2010) 123708.

[25] T. Miyake, K. Nakamura, R. Arita, and
M. Imada: J. Phys. Soc. Jpn. 79 (2010)
044705.

[26] T. Misawa, K. Nakamura, and M. Imada:
J. Phys. Soc. Jpn. 80 (2011) 023704.

[27] T. Misawa, K. Nakamura, and M. Imada:
Phys. Rev. Lett. 108 (2012) 177007.

[28] D. Tahara and M. Imada: J. Phys. Soc.
Jpn. 77 (2008) 114701.

[29] S. Sorella: Phys. Rev. B 64 (2001)
024512.

[30] B. A. Volkov and O. A. Pankratov : JETP
Lett. 42 (1985) 178.

[31] O. A. Pankratov, S. V. Pakhomov, and B.
A. Volkov : Solid State Comm. 61 (1986)
93.

[32] E. Fradkin, E. Dagotto, and D. Boy-
anovsky : Phys. Rev. Lett. 57 (1986)
2967.

[33] F. D. M. Haldane, : Phys. Rev. Lett. 61
(1988) 2015.

[34] C. L. Kane and E. J. Mele : Phys. Rev.
Lett. 95 (2005) 146802.

[35] L. Fu, C. L. Kane, and E. J. Mele : Phys.
Rev. Lett. 98 (2007) 106803.

[36] A. Kitaev, in Proceedings of the L.
D. Landau Memorial Conference “Ad-
vances in Theoretical Physics”,e-print
arXiv:0901.2686.

[37] S. Ryu, A. P. Schnyder, A. Furusaki, and
A. W. W. Ludwig : New. J. Phys. 12
(2010) 065010.

[38] X.-G. Wen : Phys. Rev. B 85 (2012)
085103.

[39] Y. Yamaji and M. Imada : Phys. Rev. B
83 (2011) 205122.

[40] B. Andrei Bernevig, Taylor L. Hughes,
and S.-C. Zhang: Science 314 (2006)
1757.

[41] M. König, S. Wiedmann, C. Brüne, A.
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