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Numerical Study on Spin Liquid in Frustrated

Systems

Tôru SAKAI1,2, Hiroki NAKANO2, Tokuro SHIMOKAWA3,

and Makoto ISODA4
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SPring-8, Kouto, Sayo, Hyogo 679-5148, Japan
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Kouto, Kamigori, Hyogo 678-1297, Japan
3Osaka University, Toyanaka, Osaka 560-0043, Japan
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Takamatsu, Kagawa 760-8522, Japan

1 Novel Spin Liquid Behav-

ior at 1/3 of the Satura-

tion Magnetization in the

S=1/2 Kagome-Lattice An-

tiferromagnet

The magnetization processes of the S=1/2

isotropic Heisenberg quantum antiferromag-

nets on the kagome and triangular lattices are

studied. Data from numerical-diagonalization

method up to 39-spin systems, are reexam-

ined from the viewpoint of the derivative of

the magnetization with respect to the mag-

netic field. We find that for the kagome-lattice

antiferromagnet, the behavior of the deriva-

tive around the 1/3 height of the magneti-

zation saturation is quite different from the

cases of typical magnetization plateaux. This

new phenomenon is called the “magnetization

ramp”[1]. We also compare it with the 1/3

magnetization plateau of the triangular anti-

ferromagnet. The critical exponent analysis

indicates a clear difference between the magne-

tization plateau and ramp[2]. In order to clar-

ify the difference more, we study a generalized

anisotropic triangular-lattice model including

the regular-triangular- and the kagome-lattice

antiferromagnets in the parameter space. It

revealed a quantum phase transition between

the triangular- and kagome-lattices at 1/3 of

the saturation magnetization[3].

2 Exotic Quantum Spin Liq-

uid Behavior of the Spin

Nanotubes

Recently some quantum spin systems on tube

lattices, so called spin nanotubes, have been

synthesized. They are expected to be inter-

esting low-dimensional systems like the car-

bon nanotubes. As the first step of theoreti-

cal study on the spin nanotube, we investigate

the S=1/2 three-leg spin tube, which is the

simplest one, using the density matrix renor-

malization group (DMRG) and the numerical

exact diagonalization (ED), conbined with a

precise finite-size scaling analysis named level

spectroscopy[4]. The spin gap, which is one

of the most interesting macroscopic quantum

effects, was revealed to be open for any fi-

nite rung exchange couplings, in contrast to

the three-leg spin ladder system which is gap-

less. It is consistent with the previous effective

Hamiltonian approach. We also found a new
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quantum phase transition caused by an asym-

metric rung interaction. When one of the three

rung coupling constants is changed, the spin

gap would vanish. In addition we theoretically

predict some new field-induced quantum phase

transitions. A chiraliy-mediated novel super-

conductivity mechanism is also proposed[5, 6,

7, 8].

These results were obtained by the numeri-

cal exact diagonalization of the S = 1/2 spin

tube with 30 spins, using the system A with 8

nodes.
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Novel Spin Flop Transition in Low-Dimensional
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1 Novel Spin Flop Phe-

nomenon in the S=1/2

Square Kagome Lattice

Antiferromagnet

Using the large-scale numerical exact diagonal-

ization, we investigated the S=1/2 Heisenberg

antiferromagnet on a two-dimensional lattice

composed of vertex-sharing triangles called the

square kagome lattice. The lattice is simi-

lar to the kagome lattice but different from

it. We examine the ground-state properties

and the magnetization process of this model.

We find that a magnetization jump appears at

the higher-field-side edge of the magnetization

plateau at the one-third height of the satura-

tion. A spin-flop phenomenon is clearly ob-

served at the jump even when the system is

isotropic in the spin space[1]

2 Quantum Phase Transi-

tion of the S=1/2 Cairo

Pentagon Lattice Antiferro-

mangets

The magnetization process of the S=1/2 Cairo

Pentagon Lattice is investigated using the

large-scale numerical exact diagonalization up

to the 36-spin clusters. As a result, we found

an interesting quantum phase transition, with

respect to the ratio of the two inequivalent an-

tiferromagnetic bonds, between two different

magnetization curves around 1/3 of the satu-

ration magnetization. Namely, the magnetiza-

tion curve with a jump before the 1/3 magneti-

zation plateau changes to the one with a jump

after the plateau[2].

These results were obtained by the numer-

ical exact diagonalization of the S = 1/2

square-kagome lattice, using the system B.
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Slow Dynamical Processes in Nonequilibrium

Metastable States

Kazuhiro Fuchizaki, Yuta Asano, and Kazuki Hatsumura
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In FY 2013, we continued pursuing ther-
modynamic identity of the modified Lennard-
Jones (mLJ) system, whose phase diagram has
been already reported [1,2]. A shortcut to un-
derstanding or predicting thermodynamic out-
comes, including the phase behavior, is to es-
tablish the equation of state (EOS). To this
end, we tried two approaches. One was to
construct an approximate EOS using the EOS
of the Lennard-Jones (LJ) system as the ref-
erence EOS. The procedure and the conse-
quence [3] is briefly outlined below. The other
was to set up an EOS as accurate as possi-
ble. To realize this latter option, we employed
the modified Benedict–Webb–Rubin (mBWR)
form, which was created on a phenomenolog-
ical basis but is known to be able to repro-
duce the thermodynamic properties of the LJ
fluid within a wide temperature (T )–pressure
(p)–density (ρ) range. We confirmed that the
mBWR EOS can successfully capture mLJ
fluid’s behavior as well [4]. The way of con-
structing the EOS is summarized in the follow-
ing. It should be emphasized that our mBWR
EOS was constructed so as to ensure the tem-
perature dependence of the third virial coeffi-
cient B3. The reflection of B3 on the EOS be-
comes crucially important when the system ap-
proaches the critical point. This aspect, which
was not mentioned in our paper [4], is briefly
touched on.

Predicting the thermodynamic properties of
the mLJ fluid from the LJ EOS [3]

The properties of the mLJ fluid were treated
as perturbations of the LJ fluid case, and the
discrepancies were expressed as density series
expansions. Here, two methods were exam-
ined to obtain the series expansions. The first

one is rather heuristic; the pressure of the mLJ
fluid was expressed by a relationship, which is
approximately correct up to O(ρ2), by paying
attention to the fact that the difference from
LJ fluid’s pressure is ascribable only to the tail
of the LJ potential omitted in the mLJ poten-
tial. The second one is systematic; based on
a functional derivative of the free energy, we
could obtain the expression for mLJ fluid’s free
energy that is correct up to O(ρ). A proper
approximation was introduced to make the co-
efficient of the correction term (proportional
to ρ) relatively tractable for actual computa-
tions. The two methods work equally well.
The second virial coefficient of the mLJ fluid
was well reproduced by these methods. Repro-
duction of the liquid–vapor coexisting envelope
was also satisfactory, except in the vicinity of
the critical point.

mBWR EOS for the mLJ Fluid [4]

Some features of the mLJ fluid behavior
were well rationalized by the perturbative
treatment mentioned above. Furthermore, we
tried to describe the thermodynamic states of
the mLJ fluid using the mBWR EOS.

The mBWR EOS contains 32 linear param-
eters and one nonlinear parameter. Therefore,
the major task for us was to find the appro-
priate values for the parameters with which
to capture the thermodynamic behavior of the
mLJ fluid over as wide a range as possible.
Ten parameters were primarily determined in
such a manner that the temperature depen-
dence of B3 as well as B2 is reproducible. The
remaining parameters were determined so that
the resultant EOS became compatible with the
extensive set of data for the internal energy
and p at given T and ρ. These data, con-

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

179



0 10000 20000
0

10

20

Density [mol/m3]

P
re

ss
ur

e 
[M

P
a]

Ar
mBWR

Figure 1: Isotherms of fluid argon near the crit-
ical point.

sisting of as many as 677 T–p data points,
were prepared by conducting molecular dy-
namics (MD) simulations over such a wide re-
gion, 0.7 ≤ T ≤ 20 and 0.001 ≤ ρ ≤ 1.15. The
mBWR EOS thus constructed satisfactorily re-
produces the liquid–gas coexistence envelope,
which has been established from the Gibbs en-
semble simulation [1].

Recalling that the dominant form of the mLJ
potential is basically the same as that of the
LJ potential, the substances, whose thermo-
dynamic states are well deducible from the LJ
potential, are expected to be describable using
the mLJ potential. This expectation was con-
firmed by finding the mLJ parameters, ϵ and
σ, that fit the fluid in question. For exam-
ple, fluid argon is well described by choosing
ϵ = 139.8kB J and σ = 3.389 Å, where kB
is Boltzmann’s constant. As an example, the
pressure variations against density observed
for argon along several isotherms are compared
with the corresponding variations predicted
from the present EOS in Fig. 1. The isotherms
delineated by thin dotted and dashed lines are
those obtained from the virial expansions up to
the terms with B2 and B3, respectively. Un-
less including the effect of B3, the isotherms
no longer show the van der Waals loop behav-
ior. It is thus essential to take the temperature
dependence of B3 into consideration upon con-
struction of the EOS.

Table 1: The updated set of the parameters
involved in the mBWR EOS.

i xi i xi
1 0.8269(8) 17 162.415(2)
2 3.187(5) 18 -67086.7(7)
3 -7.684(9) 19 33975.3(3)
4 0.409(7) 20 -243048(2)
5 -0.901(3) 21 -18.71(4)
6 0.898(2) 22 -549873(6)
7 5.00(2) 23 36.86(4)
8 -18.85(9) 24 -591544(6)
9 243083(2) 25 -146.839(1)
10 0.311926(3) 26 -366949(4)
11 3.10032(3) 27 -146.453(1)
12 -23.1883(2) 28 -157374(2)
13 20.0562(2) 29 588.307(6)
14 166.922(2) 30 -45105.1(5)
15 -6971.64(7) 31 -1443.50(1)
16 -357.638(4) 32 414.447(4)

γ 2.2650

Updating the parameters in the mBWR EOS
Although the construction of the EOS for

the mLJ fluid is said to be successful, it is
still not fully satisfied in that the thermody-
namic quantities in the low-temperature and
low-density region, which were also employed
for determination of the parameters, obtained
through the MD simulation were not well equi-
librated (as mentioned in Ref. [4]). This insuf-
ficiency was covered; the quantities in the re-
gion in question were reevaluated after a suf-
ficient equilibration was performed. The 33
parameters were recalculated, using the same
procedure as outlined above, but referring to
the new set of pressures and internal energies.
The values of the parameters thus updated are
listed in Table table1. The set of the parame-
ters must be the most refined version to date.
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Simulation of Cold Atoms with Parallelized Worm
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The world-line quantum Monte Carlo

(QMC) simulation with worm update is very

effective for a broad range of the lattice

boson/spin problems in condensed matter

physics. In particular, recent developments

in the experimental technology that made

possible to cool atoms down to sub-micro

Kelvin temperatures demand more accurate

and larger-scale simulations in various setups.

While the worm-update QMC is arguably the

only method for dealing with systems that are

directly comparable to experiments in size, it

has been impossible to run it on parallel ma-

chines for an obvious reason — the update of

the whole system is realized through only one

moving object that cannot be split into pieces.

In the present project, we aim at developing

a new algorithm that can be parallelized and

demonstrating its efficiency by applying it to

Bose-Hubbard model in 2+1 dimensions.

Here we present a parallelized multiple-

worm algorithm (PMWA) for QMC

simulations.[1] A PMWA is a generaliza-

tion of the worm algorithm and it removes the

intrinsic drawback due to the serial-operation

nature by introducing a large number of

worms. With many worms distributed over

the system, it is possible to decompose the

whole space-time into many domains, each

being assigned to a processor. The neigh-

boring processors send and receive updated

∗This report is based on the collaboration with

A. Masaki-Kato, T. Suzuki, K. Harada, and S. Todo

published as [1]

configurations on their boundaries, once in

every few Monte Carlo (MC) steps. Therefore,

the time required for communication can

be negligible for sufficiently large systems.

Moreover, with a PMWA we can measure

an arbitrary n-point Green function which is

difficult in conventional worm-type algorithms

when n > 4. The algorithm is based on the

directed-loop implementation of the worm

algorithm (DLA) that samples from the

distribution

W ({ψk}) ≡
Nτ∏
k=1

⟨ψk+1|1−∆Hη|ψk⟩

where ∆τ ≡ β/Nτ , ψk is a basis vector in some

complete orthonormal basis set, and Hη ≡
H − ηQ is the Hamiltonian with a fictitious

source term ηQ that generates discontinuities

of worldlines, namely “worms.” A configura-

tion in DLA is characterized by a graph, edges

and vertices, and state variables defined on

edges in the graph.

The update procedure of the conventional

DLA consists of two phases; the worm phase in

which the motion of the worm causes changes

in the state variables, and the vertex phase

in which vertices are redistributed. While the

vertex phase in the new algorithm is just the

same as the conventional DLA, the worm phase

must be modified. In contrast to the conven-

tional DLA, we let the worms proliferate or

decrease freely according to the weight con-

trolled by the parameter η. In conventional

DLA, therefore, we “wait” for the worms dis-

appear to measure the observables. In the
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present algorithm, we estimate them instead

by extrapolation to the η → 0. Correspond-

ing to this modification, the worm update is

modified in two ways: worms are created and

annihilated at many places at the same time,

and we introduce a special update procedure

for the region near the boundaries. As a result,

the worm phase in the new algorithm consists

of three steps: worm creation and annihilation,

worm scattering, and a domain-boundary up-

date. The last step is necessary only for par-

allelization, and is not used when the program

runs on a serial machine.

The essential difference between the new al-

gorithm and the conventional worm algorithm

or DLA is that we regard the parity of the local

number of worms as an intermediate represen-

tation of the state. To be more specific, for

updating a local configuration around a ver-

tex, we simply let a worm scatter at the ver-

tex in the conventional algorithm. In the new

algorithm, instead we assign a single-bit vari-

able to each leg of the vertex. If we have even

(odd) number of worms on the leg, we assign

0 (1) to it. Then we forget about the spe-

cific worm configuration on each leg and con-

sider a stochastic process in terms of these new

variables. Once a new configuration (in terms

of the parity variables) is selected, we restore

a specific worm configuration according to a

weight with restriction imporsed by the parity

variables. This parity representation is espe-

cially useful in handling boundaries, since by

it we can avoid a cumbersome “time” ordering

of the scattering events that would be neces-

sary to keep the detailed balance condition in

the conventional representation.

In order to recover the results in the zero-

worm density (or η → 0 limit), we have to

numerically extrapolate a few sets of finite-η

results. In principle, we can do that by us-

ing quadratic fitting function. If the system

is in the superfluid phase, however, due to the

influence of the spontaneous U(1) symmetry

breaking that would take place in the thermo-

dynamic limit, there is relatively broad region

of η in which the term linear in η is dominating

even in finite systems. In such cases, by a lin-

ear fitting we can obtain a good approximate

value of the thermodynamic limit.

One of the advantage of the present method

is that we can directly measure the order pa-

rameter ⟨b⟩. Moreover, we can measure arbi-

trary multipoint Green’s function simply mea-

suring the product of the local worm densi-

ties at the points appearing in the argument of

Green’s function. For the demonstration of the

efficiency of the present algorithm, we carried

out a simulation of the systems ranging from

L = 8 upto L = 10240 at fixed βt = 16. This is

much larger than a single processor’s memory

can accommodate. We successfully equilibrate

the whole system and extrapolate to the zero

η limit. While this is already something that

cannot be done by the conventional method,

our code based on the present method showed

a reasonably good scaling of the computational

time. For an example, in the range between 8

processors to 1024 processors, the estimated

statistical error in the energy with fixed sys-

tem size and the wall time was approximately

proportional to N−0.41
p with Np being the num-

ber of processors, when the system is deep in

the superfluid phase, whereas N−0.5
p is ideal.
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The fate of the super-cooled liquid state at

low temperatures or high densities is an im-

portant open question in physics. Very re-

cently a notable progress on the theoretical

side has been made through the construction of

the exact replica mean-field theory (replicated

van der waals theory) in the large-dimensional

limit [1, 3]. An important new prediction of the

theory is that the replica symmetry breaking

(RSB) is not limited to the usual 1 step RSB

assumed in conventinal view points but is ex-

tended to 1+ continuous RSB at high densities

around the jamming point.

In the present work we performed extensive

MD simulations of the out-of equilibrium dy-

namics of a densely packed three-dimensional

emulsion system (see our previous work [2]

for the details) focusing on the fluctuation-

dissipation relation (FDR). The purpose of the

present work is to clarify if the 1+ continuous

structure, which is suggested by the 1+ con-

tinuous RSB scenario, appear in FDR in the

realistic three-dimensional system.

We measured the shear-stress relaxation

taking care of the aging effects. The system

is quenched from the liquid state to the work-

ing temperature T . After some waiting time

tw, the shear-strain of small amplitude γ is put

to the system via affine transformation. Then

relaxation of the shear-stress σ(t) is measured

as the function of the elapsed time t after the

switch-on of the perturbation. We also mea-

sured the shear stress auto-correlation func-

tion C(t, tw) ≡ 〈σ(t)σ(tw)〉. In equilibrium,

the response µ(t, tw) = 〈σ(t)〉/γ and C(t, tw)

are related by the fluctuation dissipation the-

orem (FDT). In Fig. 1, we show the two data

set in a parametric plot which clearly indicated

the anticipated 1+continuous FDR.

µ(t, tw) FDT
βC(t, tw)

Figure 1: Parametric plot of the response and cor-

relation functions associated with shear at volume

fractionφ = 0.67 and kBT/ǫ = 10−5. The waiting

times tw as varied as tw = 102, 103, 3 · 103, 104, 3 ·

104, 5·104, 105 from the bottom to the top. The two

dotted straight lines are the equilibrium FDT line

µ(t, tw) = βC(t, tw) and and the 1-step extended

one µ(t, tw) = xβC(t, tw) with x = 0.007. It can

be seen that a curved, continuously varying regime

exists between the two asymptotic regimes.
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Using a fluid-particle dynamics approach [1],
which is a hybrid simulation method for the
dynamics of complex colloidal suspensions, we
numerically studied the effects of hydrody-
namic interactions on the collective dynamics
of active suspensions within a simple model
for bacterial motility: each microorganism is
modeled as a stroke-averaged dumb-bell swim-
mer with prescribed dipolar force pairs. The
present study illustrates that hydrodynamic
interactions not only affect kinetic pathways
in active suspensions, but also cause major
changes in their steady state properties.

Simulations of the following issues (i) and
(ii) were partially and fully performed at the
ISSP Supercomputer Center, respectively. The
programs are parallelized with a combination
of OpenMP and MPI techniques.

(i) Using both simulations and qualitative
arguments, we revealed the following [2].When
the separation between swimmers is compara-
ble to their size, the swimmers’ motions are
strongly affected by activity-induced hydrody-
namic forces. To further understand these ef-
fects, we investigated semi-dilute suspensions
of swimmers in the presence of thermal fluc-
tuations. A direct comparison between simu-
lations with and without hydrodynamic inter-
actions shows these to enhance the dynamic
clustering at a relatively small volume frac-
tion; with our chosen model the key ingredient
for this clustering behavior is hydrodynamic

trapping of one swimmer by another, induced
by the active forces. Furthermore, the den-
sity dependence of the motility (of both the
translational and rotational motions) exhibits
distinctly different behaviors with and without
hydrodynamic interactions; we argue that this
is linked to the clustering tendency.

(ii) In recent experiments on E. coli in the
presence of additional attractive forces (cre-
ated via a depletion potential due to polymer
additives) it was shown experimentally and by
simulation that activity produces a significant
shift of the phase boundary compared to that
of a passivated system with the same attrac-
tions [3]. However the configurations favored
by such an attraction need not coincide with
those stabilized by the activity-induced hydro-
dynamic interactions. Moreover, one very re-
cent study suggests a mechanism whereby the
equilibrium phase separation caused by attrac-
tions is interrupted by activity-induced cluster
breakup [4]. We are currently addressing this
problem by simulation [5].
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Figure 1: The structure factor S(k) for pas-
sive (left panel) and active (right panel) sus-
pensions. In active suspensions, the clustering
is evident; the structure factor for 2ak < 1,
where 2a is roughly the swimmer size, can be
described by the Ornstein-Zernike form, which
is represented by the black solid curves in the
cases with and without hydrodynamic interac-
tions, respectively. The overall clustering ten-
dency is significantly enhanced by the addition
of hydrodynamic interactions.
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In this project, we studied (A) edge state of 

two-dimensional bosonic lattice systems in 
trapped potentials, (B) edge state of multi-
boxies SU(N) Heisenberg model on a square 
lattice, and (C) magnetic excitations of the 
Heisenberg-Kitaev model on a honeycomb 
lattice. The digests of them are shown as 
follows. 
 

A. Edge state of two-dimensional 
bosonic lattice systems in confinement 
potentials 

In condensed matter physics, edge state of 
topological insulators (TIs) has been studied 
extensively [A1]. The fundamental properties 
of TIs are that the bulk with an energy gap is 
characterized by non-local order parameters 
and a stable metallic state against perturbations 
breaking specific symmetries appears at the 
edge of bulk. In quantum spin systems, the 
Haldane state in the S=1 antiferromagnetic 
Heisenberg chain [A2] shows the similar 
properties; a finite spin gap, hidden Z2 
symmetry breaking and free edge spins. 
Recently, edge/surface states of gapped states 
in the higher dimensional spin/bosonic systems 
have been much attracted. To study the higher 
dimensional spin/bosonic systems, a cold 
atomic system in optical lattice is one of ideal 
candidates, because it provides a good 
controllability for model parameters. However, 
the presence of confinement potential seems to 
be an unavoidable problem in experiments, and 
the effect of confinement potentials (i.e. non-
uniformity of systems) on the edge states has 
not been well studied yet. 

In this study, we focused on the effect of the 
confinement potential in 2D bosonic lattice 
systems and discussed the edge states of 
bosonic Mott insulating regions. In order to 
study it, we treated the rectangular lattice 
systems, where the chemical potential only 
changes along a uni-axial (x-axial) direction 
and open (periodic) boundary condition along 
the x (y)-axis direction were applied. From the 
quantum Monte Carlo (QMC) calculations, we 
discussed the temperature dependence of local 

helicity modulus and off-diagonal correlation 
functions by changing the curvature of 
confinement potential. Since there exists the 
uni-axial potential, there are three regions in the 
ground state: ρ=1 bosonic Mott insulating 
region, ρ≠0 fluid (IC) region, and vacuum 
region. Here ρ is particle density per site. When 
width (W) of IC region surrounding the ρ=0 
(Mott insulating) region, is narrow (W<10 
sites), off-diagonal correlation shows an 
exponential decay at a finite temperature. 
However, when the width W is enough large 
(W ~ 20 sites), we found that the correlation 
function at edges clearly shows power-law 
decay below an offset temperature, where the 
local helicity modulus satisfies the same 
equation at the KT fixed point of the 2D 
uniform XY model. 

 
B. Edge state of multi-boxies SU(N) 

Heisenberg model on a square lattice 
The ground state phase diagram of the 

multibox SU(N) Heisenberg model on a square 
lattice has been predicted by Read and Sachdev 
[B1]. This mode is the higher symmetry version 
of the conventional Heisenberg model for 
SU(2) spin. For the model with the Young 
tableaux with m rows and n columns, it was 
predicted that the N-n phase diagram does not 
depend on the value m, and has a single line 
that separates the Neel phase and valence bond 
solid (VBS) phases. The VBS phases can be 
also classified into three phases depending on 
the value of n. The ground state is a nematic 
VBS order with 180-degree rotational 
symmetry breakings of lattice for n=2 (mod 4), 
whereas a columnar order with translational 
and 90-degree rotational symmetry breakings 
of lattice is stabilized for n=1 or 3 (mod 4). If n 
is a multiple of 4, there is no spontaneous 
breaking of lattice symmetry. Based on the 
VBS picture, the n=4 state is regarded as the 
2D version of the 1D Haldane state.  

In this study, we calculated the edge spin 
correlation of the multibox SU(N) Heisenberg 
model by QMC method based on the loop 
algorithm. In Figure 1, the results for the 
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SU(N=20) and n=2 are shown. We found that, 
even in the nematic ground state case, the 
correlation of the edge spins is power-law 
decay in contrast to an exponential decay of the 
correlation perpendicular to the edge.  
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Fig. 1: Spin-spin correlation on the edge for SU(N=20) 
and (m,n)=(1,2) at the inverse temperature β=32L. Left 
(Right) hand side is the results on edge sites and Right 
one is the correlation perpendicular to the edge 
direction.  
 

C. Magnetic excitations of the 
Heisenberg-Kitaev model on a 
honeycomb lattice 

In recent years, effects of spin-orbit 
couplings have much attracted in strongly 
correlated electron systems. In 5d-transition 
metal oxides, coulomb repulsion is relatively 
small against a kinetic energy. This allows us to 
expect that they show a metallic feature. 
However, it was reported experimentally that 
several Iridium oxides, such as Sr2IrO4 and 
A2IrO3 (A=Na or Li), show an insulator nature. 
Theoretically, it was pointed that the presence 
of the strong spin-orbit coupling is a key to 
understand the insulating property of those 
compounds [C3]. For example, Na2IrO3 has the 
small gap 0.35 [eV] [C1] and shows the phase 
transition to the magnetic ordered state (zigzag 
order) under T ~ 20[K][C2]. The magnetic 
moments of Na2IrO3 are carried by Ir ions 
locating at the center of edge-shared IrO6 
octahedrons, and construct the layered 
honeycomb lattice. The interesting point of this 
compound is that the interactions between 
magnetic moments on Ir ions include the 
Kitaev-type anisotropy in addition to the 
conventional Heisenberg type interactions 
because the Ir-O-Ir bond on the interaction path 
takes almost 90 degree [C3]. In the phase 
diagram for the Heisenberg-Kitaev model on 
the honeycomb lattice, three magnetic ordered 

phases appear by tuning the coupling ratio of 
the Kitaev and Heisenberg term; the Neel, 
stripy and spin liquid phase. Several authors 
have discussed the origin of zigzag order 
observed in Na2IrO3 and proposed the 
parameter set that can explain experimental 
observations [C2,C4].  

In order to discuss the suitability of 
proposed parameters, we calculated the spin-
wave excitations and dynamical structure factor 
by the numerical exact-diagonalization method. 
Via comparisons with inelastic neutron 
scattering measurements, we discussed the 
several parameter sets proposed in previous 
papers [C2,C4].  

In this project, we parallelized the Lancsoz 
code to calculate the dynamic structure factors. 
In Figure 2, we show a bench march results of 
our code. 
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Fig. 2: Strong-scaling results for parallelized Lanczos 
code. The horizontal axis is the efficiency and the value 
is scaled by the results for 16 cores. In the ideal case, 
“efficiency” should keep constant at one. The sampling 
was performed for the N=32 Heisenberg-Kitaev model 
on the honeycomb lattice when OpenMP threads were 
fixed at four, where N is the system size. 
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Calculation of dispersion surfaces and rocking curves

for X-ray ‘In-plane n-beam’ cases
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Figure 1: Dispersion surfaces calculated for

0 0 0- (forward-diffracted), 5 1 1- and 3 1 3-

‘in-plane’ three-beam case of silicon crystal.

A computer program with which dispersion

surfaces and X-ray reflection intensities for ‘in-

plane’ n-beam cases has been developed, in

which n X-ray beams whose planes of incidence

are coplanar are simultaneously strong in the

crystal. This case was studied several decades

ago before numerical solutions for general n-

beam cases were given with Ewald-Laue (E-

L) formulation by Colella [1] and with Takagi-

Taupin (T-T) formulation by the present au-

thor [2-5] since the polarization coupling effect

does not have to be considered.

Incidentally, the method to fix the wave-

length of the synchrotron X-rays with a mono-

Figure 2: Dispersion surfaces for 0 0 0-

(forward-diffracted), 2 2 0-, 4 2 2- and 0 6 2-

‘in-plane’ X-ray four-beam case of silicon crys-

tal.

lithic silicon crystal giving two-bounced h1 and

h2 reflections, is widely used. In this case,

h3 (= h1 + h2) reflection occurs necessar-

ily. Here, scattering vectors h1, h2 and h3

are coplanar. However, this case was discussed

just using the two-beam approximation and

the interference effect due to X-rays reflected

by h3 has completely been neglected for many

years. The present work is intended precisely

to deal with this effect.

Figure 1 shows dispersion surfaces calcu-

lated in this work under an assumption that
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h1, 5 1 1- and h3, 3 1 3- ‘in-plane’ three-beam

condition is satisfied. The abscissa and ordi-

nate are positions in the reciprocal space in

the directions parallel and perpendicular to the

crystal surface, respectively. The three curves

are loci of initial point of wave vectors of Bloch

waves. When selecting h1, 5 1 1 reflection as

the first reflection and h2, 2 2 4-reflection as

the second one to fix the wavelength of the

synchrotron X-rays, h3, 3 1 3-reflection occurs

necessarily, which was neglected completely for

several decades.

The program has been coded such that

other reflections that simultaneously occurs

are searched automatically after the first and

second reflection indices are input. Figure 2

shows four dispersion surfaces for a four-beam

case by inputting 2 2 0 and 4 2 2 as the first

and second indices. Here, 0 6 2 has been au-

tomatically found as the third reflection. Very

complex-shaped dispersion surfaces are found

in this figure.

Furthermore, third or more reflection indices

are not necessarily coplanar. It has been found

with this program that as many as 48 recipro-

cal lattice nodes can be on the surface of the

Ewald sphere, which revealed the importance

of consideration on n-beam cases whereas al-

most all discussions on X-ray diffraction phe-

nomena have been limited to the two-beam

cases. Considerations on this situation is im-

portant not only for X-ray crystal optical de-

vices designed based on the dynamical diffrac-

tion theory but also for crystal structure analy-

sis based on the ‘two-beam’ kinematical theory

almost for a hundred years.

Since the equivalence between the E-L and

T-T formulations described with Fourier trans-

form has been explicitly clarified in reference

[5], both of them should be properly used for

purpose when describing X-ray n-beam cases

that is apparently difficult to discuss. The rea-

son why only the two-beam approximation has

been used in both dynamical and kinematical

theories for a hundred years, is that it was just

easy to discuss in spite that there are many

problems that should be discussed based on

the n-beam approximation.
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Equilibrium-state calculation in spin-glass models

Koji Hukushima
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3-8-1 Komaba, Meguro-ku, Tokyo 153-8902

Mean-field theory of spin glasses has pro-
vided a number of novel concepts for un-
derstanding of a phase transition in disor-
dered glassy systems. In particular, replica-
symmetry breaking (RSB) plays an essential
role in describing complex free-energy struc-
ture. It turns out that the pattern of RSB
is clarified into two distinct classes, full RSB
and one-step RSB. Since the mean-field the-
ory has been established, one of the main is-
sues is whether such concepts survive in short-
ranged spin-glass models in finite dimensions.
Most of the effort has been devoted to exam-
ining the issue in an Ising spin glass model in
three dimensions, whose corresponding mean
field model, i.e., the Sherrington-Kirkpatrick
model, exhibits the full RSB. Despite extensive
studies including large scale numerical simula-
tions, a definite conclusion has not yet been
drawn.

Some mean-field spin-glass models with the
one-step RSB have attracted much attention of
many researchers in recent years. For instance,
p-state Potts glass with p ≥ 3 belongs to this
class. These models are regarded as a proto-
type of a phenomenological picture of struc-
tural glass transition, called random first-order
transition (RFOT), which is characterized by
a thermodynamic transition with a discontinu-
ous order parameter without latent heat. The
advisability of the RSB picture in finite dimen-
sional spin glass models comes to an issue again
in the context of the structural glass transition.
While the existence of the spin-glass transition
of the Potts glass in three dimensions is clarified
for p ≤ 6[1,2], no feature predicted by RFOT
based on the one-step RSB is found in numer-
ical simulations and the nature of low temper-
ature phase is not fully understood.

Our purpose is hopefully to detect some ev-
idence of RFOT in a three dimensional Potts
glass model by using Monte Carlo simulations.

Recently, the fragility of the RFOT feature
against finite dimensional fluctuation is dis-
cussed in Ref.[3]. According to the argument, if
RFOT in finite dimensions is a possibility, the
model should take a sufficient large number of
states p in high dimensions, say d ≥ 9 with d
being spatial dimension. Instead, our strategy
is to take a large number of connectivity up to
third neighbor couplings with keeping dimen-
sions three.

We have performed a large scale Monte
Carlo simulations based on extended ensem-
ble method for the 7-state Potts glass model
in three dimensions with third neighbor cou-
plings. Our findings are as follows[4]: (1)
The model exhibits a thermodynamic spin-
glass transition at finite temperature Tc, that
is in contrast with the fact that the 7-state
Potts glass with nearest neighbor couplings
has no glassy phase at up to very low tem-
perature. (2) The value of the critical expo-
nent for the correlation length is very close to
2/d derived by a heuristic scaling argument
based on RFOT. (3) It is strongly suggested
that the spin-glass order parameter appears
discontinuously at Tc and no latent heat ex-
ists. (4) The order-parameter distribution be-
low Tc has double peaks at zero and a finite
value corresponding to the self-overlap state.
These are fully compatible with those expected
from the RFOT picture based on the one-step
RSB. Presumably, this is the first numerical ev-
idence showing (one-step) RSB in three dimen-
sional spin-glass models and this also gives the
first explicit statistical-mechanical model with
RFOT features in three dimensions.

The present work has been done in collabo-
ration with Takashi Takahashi.
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Clarification of magnon turbulence in nano-contacts.

Katsuyoshi Matsushita
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The response phenomena of magnets have

been investigated in order to clarify their po-

tential in the industrial applications. Espe-

cially, the instability problem of the micro-

scopic magnetic structure under the electronic

current is an important issue related to the

availability of the magnetic devices. For ex-

ample, in the case of the communication de-

vice using voltage signals, the instability fre-

quently results in a noisy signal and limits the

efficiency of the devices. The further physical

understanding the instability is needed to give

keys to solve the issue.

In the present work, we shed light on the

current induced turbulence in magnetic sys-

tem as a possible instability in the magnetic

system[1]. We have showed that a nanoscopic

magnetic system confining a domain wall un-

der current exhibits a transition from a steady

state to a turbulence. In the study we con-

jectured that the critical parameters, namely

the critical twist angle of the magnetic sys-

tem Θc and the critical applied current jc, of

the transition only depends on the characteris-

tic length, which depends only on the applied

current and the exchange stiffness. To confirm

this conjecture, we should determine the main

factors of the transition. As a first step of the

determination, we concentrate on the effect of

the Gilbert damping.

We carried out the numerical simulation of

the nanoscopic magnetic wire system under the

current where the turbulence appears and eval-

uate the critical twist angle of the magnetic

system. Figure 1 shows the time average mag-

netization S. The abrupt change of the order
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Figure 1: Order parameter as a function of

twist angle of magnetic structure (See Ref.1)

for α = 0.02, 0.04 and 0.08 at around j ≃ 1.5jc.

Θc1 and Θc2

parameter reflects the transition between the

steady state (not fluctuating S) and the turbu-

lence (fluctuating S). The small change in the

Gilbert damping constant α does not change

the transition twist angles Θc1 and Θc2 for α

of realistic small values (0.02 and 0.04). This

indicates that the effect of the Gilbert damp-

ing is not a main factor for determining the

transition points as conjectured previously in

the realistic system. However for unrealisti-

cally large α (0.08), the turbulence fluctuation

is suppressed because of strong damping and

thereby Θc2 can not be determined from the

simulation.
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Novel ordering in frustrated spin systems
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Frustrated spin systems have attracted re-

cent interests. Typical examples of such frus-

trated systems in two dimension are Heisen-

berg antiferromagnets on the kagome lattice

and the triangular lattice. Recently a new type

of frustrated lattice interconnecting the trian-

gular lattice and the kagome lattice has been

found in NaBa2Mn3F11 [1]. In this kagome-

triangular lattice, a kagome lattice deforms so

as to generate the next-nearest (NN) neighbor

interactions between three of six NN neighbors

on the regular kagome lattice.

The Hamiltonian of the kagome-triangular

lattice Heisenberg model is given by

H = J1
∑
⟨i,j⟩1

S⃗i · S⃗j + J2
∑
⟨i,j⟩2

S⃗i · S⃗j , (1)

where S⃗i is a unit vector with three compo-

nents, and ⟨i, j⟩1 (⟨i, j⟩2) represents the sum

over the nearest neighbor (NN neighbor) pairs

on the kagome-triangular lattice.

Based on an analysis of the Fourier trans-

form of the exchange interactions, we found

that typical q = 0 state and
√
3 ×

√
3 state

appear for antiferromagnetic J1 with antifer-

romagnetic J2 and ferromagnetic J2, respec-

tively. In contrast, for the case of ferromag-

netic J1 and antiferromagnetic J2 the wavevec-

tor which minimizes the energy appears along

the line connecting q = 0 and the M point,

indicating a possible novel ordered structure.

In order to investigate the ordering of the

kagome-triangular lattice Heisenberg model,

we performed extensive Monte Carlo simu-

lations. The Monte Carlo simulations were

performed based on the standard heat-bath

method combined with the over-relaxation

method. The lattice is a L × L kagome-

triangular lattice with 24 ≤ L ≤ 96 with peri-

odic boundary conditions.

For ferromagnetic J1 and antiferromagnetic

J2 with J2/|J1| ≳ 1, the ground state is a

non-coplaner multiple-q state which is a super-

position of three independent wavevectors at

the M points. Based on the analysis of snap-

shots obtained from Monte Carlo simulations,

we conclude that this multiple-q state is iden-

tical to the 12 sublattices cuboctahedral order

found in the conventional J1-J2 kagome lat-

tice Heisenberg model[2, 3]. In addition to this

cuboctahedral phase, we found a novel incom-

mensurate non-coplaner phase, which did not

appear in the conventional kagome lattice J1-

J2 Heisenberg model, for 1/2 ≲ J2/|J1| ≲ 1.

Details of this incommensurate phase will be

investigated in future works.
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Nonequilibrium phase transitions in Strongly Correlated 
Electron Systems 
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Owing to recent developments in 

experimental techniques such as pump-probe 

measurements and nonlinear transport, the 

research of nonequilibrium properties of 

strongly correlated electron systems is 

becoming more and more important. From the 

theory side, the bottleneck of progress is the 

lack of reliable numerical methods which can 

be used to study phase transitions that takes 

place dynamically. Most previous methods such 

as QMC were developed to study equilibrium 

time-independent problems. Recently, the 

dynamical mean field theory (DMFT), a very 

standard method in correlated electron theory, 

was extended to nonequilibrium dynamics 

using the Keldysh green’s function method. 

This method can be applied to models of 

strongly correlated systems such as the 

Hubbard model. In collaboration with H. Aoki, 

N. Tsuji, M. Eckstein, M. Kollar, and P. Werner, 

I wrote a review article on this topic, which will 

be published in Review of Modern Physics [1]. 

The essence of this method is to take into 

account the local correlation, which is 

important to describe the Mott physics, by 

starting from a impurity model represented by 

the Anderson model, and incorporate the band 

effect by performing a self-consistent loop on 

the green’s function (Fig.1).  Nonequilibrium 

DMFT has been applied to several problems 

such as the photo-induced metallization, 

dielectric breakdown problem, as well as 

quantum quench. In the project with the 

supercomputer in ISSP, I am trying to extend 

nonequilibrium DMFT to study unconventional 

superconductivity in cuprates [2]. At present, 

we have developed the calculation scheme and 

algorithm and implemented a test program. I 

expect to report further progress shortly. 
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Fig.1 A schematic representation of the 

algorithm of dynamical mean field theory. 
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The Scaling Law of the Systems with

Long-Range Interactions
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The systems with long–range interactions

are known to exhibit an odd behaviour, such

as ensemble inequivalence1, negative specific

heat, and explicit shape– and size–dependency

of thermodynamic relations.

Since we should concern all interaction forces

of every particle pairs for long–range systems,

numerical analysis is more difficult compared

to short–range systems. Thus, numerical cal-

culation of long–range systems should be done

on super computers.

In this research, we have studied the scaling

law of the systems with both long– and short–

range interactions. For systems only with

a single long–range interactions which scales

as ∼ 1/rα, the scaling law is conjectured by

Tsallis[2] and confirmed later by many numer-

ical simulations [3]. In this theory, thermody-

namic quantities scale as E ∼ NN∗E∗, T ∼
N∗T ∗, V ∼ NV where d is a spacial dimension

and N∗ is given by N∗ = N1−α/d.

However, for systems with both short– and

long–range interactions, N∗ should be mod-

1For short–range systems, all the thermodynamic

relations calculated from the microcanonical ensemble

and the canonical ensemble agrees each other. This

property is called the ensemble equivalence. However,

this property does not hold for some systems with long–

range interactions [1].
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Fig. 1: Left: the relation between energy and

temperature for N∗ = N1−α/d (previously con-

jectured formula), and right: our new formula

of N∗. You can see four lines lap over each

other for bottom figure, which means the scal-

ing factor N∗ is correct.

ified for small system size. We conjectured

what formula of N∗ should be suited for such

systems and confirmed this formula by numer-

ical simulations.

In order to confirm our new formula of N∗,

we have numerically simulated a classic lat-

tice system with two potentials whose decaying

speed is different each other. This computa-

tion requires a lot of computational power, so

the super computer was much helpful for this

simulation.

The result obtained by our simulation is

plotted in Fig.1. Four different lines does not

lap over each other for N∗ of previous work

[left figure], but for newly suggested N∗ those

lines lap over each other [right figure].
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The polymorphism of calcium carbonate
(CaCO3) has attracted great interest from
long ago. The most thermodynamically sta-
ble CaCO3 crystal is calcite. However, the nu-
cleation of metastable vaterite occurs instead
of calcite. The nucleation of metastable arag-
onite or metastable hydrated CaCO3 crystals
also occurs in the presence of impurities, such
as Mg2+ ions. The CaCO3 polymorphism indi-
cates that the nucleation of metastable CaCO3

crystals can be kinetically favored over the
nucleation of calcite. However, the cause of
the polymorphism remained unclear, because
it was difficult to observe the initial stage of
nucleation at the atomic scale in solution.

Recently, several experimental studies have
reported the nucleation of CaCO3 crystals
from amorphous CaCO3 (ACC) particles
formed in solution. Therefore, the structure
of ACC may be particularly relevant to CaCO3

polymorphism. In this project, we investigated
the effects of Mg2+ ions and H2O molecules on
the atomic-scale structure of ACC by means of
molecular dynamics (MD) simulation [1, 2].

The simulation was performed for bulk
ACC. The system for ACC was a cubic consist-
ing of 840 particles, which was the sum of the
number of Ca2+ ions, Mg2+ ions, CO3

2− ions
and H2O molecules. Three-dimensional peri-
odic boundary conditions were imposed on the
system. The fraction of Mg2+ in the system
was 0, 0.25, 0.5, 0.75 and 1.0, and the fraction
of H2O molecules in the system was 0, 0.25,

0.5, 0.75. The CaCO3 potential model pro-
posed by Raiteri et al. was used to estimate the
CaCO3 interactions in ACC [3]. Mg2+ poten-
tial parameters were developed in this project
[1]. The interaction for the H2O molecules
was estimated using the TIP4P-Ew model [4].
Temperature and pressure were maintained at
300 K and 1 atm, respectively.

The simulation preformed using NEC SX-
9 in ISSP provided us the follwing new find-
ings: The structure of pure ACC resembled
that of vaterite rather than those of calcite
and aragonite. However, Mg2+ ions hindered
the formation of a vaterite-like structure in
ACC. When the fraction of H2O molecules
was high and Mg2+ ions were present, the for-
mation of monohydrocalcite-like structure was
promoted.
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Numerical study of quantum liquid phase using tensor network variational
method

Kenji HARADA
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

In the past decade, the disordered behaviors of
materials on a layer have been attracting attention.
In particular, the possibility of a quantum spin liq-
uid state has been studied. In general, the order
of a quantum spin liquid state can be regarded as
a topological one which cannot be transformed to
a trivial state. However, except for special theo-
retical models, the evidence of topological order on
effective models of materials is poor.

The antiferromagnetic Heisenberg model on a
Shastry-Sutherland lattice is an effective model of
SrCu2(BO3)2. We have an interest in the possi-
bility of intermediate disordered phase between a
plaquette valence-bond-solid (VBS) phase and an
antiferromagnetic phase on this model. We studied
the ground states by using MERA tensor network
methods. In our results, the plaquette VBS or-
der is very weak near the antiferromagnetic phase.
Thus, the existence of intermediate disorder phase
is not clear yet. We continue to improve the nu-
merical precision by applying a new algorithm of
tensor networks.

In some cases, to protect the topological state
against a trivial state, we need symmetry on mod-
els. Then, it is called symmetry-protected topologi-
cal order. The hidden order of quantum spin model
on a chain is a striking example of the symmetry-
protected topological order[1]. We found the gen-
eralized Jordan-Wigner transformation[2] to dis-
entangle the topological order of S=1 bilinear-
biquadratic (BLBQ) models on a chain[3]. We suc-
cessfully extended it to SO(N) BLBQ models[4].
Using this non-local transformation, we can map
an SO(N) BLBQ model to a N-color bosonic
model. In particular, a symmetry-protected topo-
logical order can be transformed to a Landau
symmetry-broken order analytically. We can study
a symmetry-protected topological state as a con-
ventional symmetry-broken state. In addtion, the
negative-sign problem of quantum Monte Carlo
(QMC) calculation[5] perfectly disappears. Thus,
we can study the topological ordered state by QMC
with high precision. Using a worm algorithm on
the ISSP super computer system B, we observed
the rapid growth of entropy (See Fig. 1) and finite
temperature behaviors of topological order parame-
ter (See Fig. 2). The conventional approach cannot
calculate these quantities with high precision.
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FIG. 1. Entropy per site of SO(3), SO(4), and SO(5)
BLBQ models on a chain at the generalized VBS points.
The chain length L is 256.
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Numerical study on low-energy states

of quantum spin systems
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Presice estimation of physical quantities of
a quantum spin system is often difficult be-
cause the system is a typical many-body prob-
lem. Under circumstatnces, importance of nu-
merical approaches, especially, methods be-
yond any approximations, becomes higher and
higher. Computational studies have con-
tributed much for our deep understanding of
various quantum spin systems. However, it is
still difficult to treat frustrated quantum spin
systems in spatial dimensions larger than one.
The reason of this difficulty is that such sys-
tems cannot be treated by the density ma-
trix renormalization group (DMRG) calcula-
tions and the quantum Monte Carlo simula-
tions. The numerical diagonalization method
based on the Lanczos algorithm is an almost
unique way as a valid method for such frus-
trated quantum spin systems. In this method,
unfortunately, only very small system sizes can
be treated. To overcome this disadvantage,
we have successfully developed a hybrid-type
parallelized code of Lanczos diagonalization[1].
Using this Lanczos-diagonalization calculation
as a primary approach, we investigate quan-
tum spin systems. We also employ other nu-
merical methods as supplementary ones; we
examine quantum spin systems from various
points of view.

The primary study of this year in the present
project is the magnetization jump in the S =
1/2 Heisenberg antiferromagnet on the square-
kagome lattice[2]. We find that the system
shows a magnetization plateau at the one-third
height of the saturation in its magnetization
process; the plateau is accompanied by a mag-
netization jump at the higher-field edge. In
order to clarify the mechanism of the occur-

rence of the jump, we observe the local mag-
netization, capturing the bahavior of the spin-
flop phenomenon in spite of the fact that the
system is isotropic in spin space, where the
spin-flop phenomenon is widely known to be
a phenomenon that occurs when the system
includes some anisotropy. The same behavior
is observed in the Heisenberg antiferromagnet
on the Cairo-pentagon lattice[3].

Properties of other frustrated Heisenberg
antiferromagnet were studied by numerical-
diagonalization method [4, 5, 6, 7]. Random-
ness effect in a frustrated system was also
investigated[8]. Our numerical results and the-
oretical arguments contribute to analyze ex-
periments of various magnetic conpounds[9,
10, 11]. Our studies of quantum spin systems
by several numerical approaches including par-
allelized calculations of Lanczos diagonaliza-
tion contribute to our understandings of these
systems.
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Dynamical scaling analysis on the low-temperature

phase for the RP2 model in two dimensions
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Figure 1: Calculations are made with ∆T = 0.05
for 0.050 ≤ T ≤ 0.500, and with ∆T = 0.005 for
0.510 ≤ T ≤ 0.555.

We investigate the nature of the phase transi-
tion which has been reported to appear in the low-
temperature regime for the RP2 model in two di-
mensions. [1, 2] They suggested that there exist
a topological phase transition like the Kosterlitz-
Thouless (KT) one, while, recently, a possibility
of no transition has been claimed [3, 4]. We ap-
ply the nonequilibrium relaxation (NER) method
and examine the improved dynamical scaling anal-
ysis [5, 6] for the KT transition by the use of the
Bayesian inference and the kernel method, and the
relaxation of fluctuations to discuss the critical ex-
ponents η and z inside the KT phase.

The Hamiltonian for the RP2 model is

H = −J
∑

〈ij〉

cos2(θi − θj). (1)

We perform Monte Carlo simulation with Metropo-
lis dynamics. First, we estimate the relaxation
of the order parameter m(t) = 〈

∑

i cos θi〉t /N
from the all-aligned state, where 〈· · ·〉t represents
the dynamical average at t Monte Carlo steps

Figure 2: Scaling plot.

(MCS). Calculations are performed on lattices up
to 15001×1500 with skew boundary condition. The
averaging is made for 1024 independently chosen
samples. The result is shown in Fig. 1; note the
unit of temperature is 2J/3kB which is used in the
Lebwohl-Lasher model.

In the NER analysis of KT transition, it has been
a efficient tool due to the finite-time scaling ,

m(t, T ) = τ−λΨ(t/τ), (2)

where m(t, T ) is a relaxation of magnetization from
the all aligned state. τ(T ) is the relaxation time,
which is expected to diverge as

τ(T ) ∼ exp(c/
√

T − TKT) (3)

in T > TKT. To estimate TKT, we fit the data to the
above formula using the improved method apply-
ing the Bayes inference and the kernel method. [6]
In Fig. 2, we show the resulting scaling plot for
X = t/τ vs. Y = τλm(t). Furthermore, we apply
the algebraic form τ(T ) ∼ |T − Tc|

−zν instead of
eq.(3), and compare the results. This provides the
indication of the KT transition at T = 0.508 in the
present model.

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

201



 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5

z

T

Figure 3: Temperature dependence of the exponent
z inside the KT phase.

Next we examine critical exponents at and be-
low the estimated KT transition temperature. We
calculate m(t) and

fmm(t) ≡ N

(

〈m2〉t
〈m〉2t

− 1

)

(4)

to estimate these exponents. Calculations are per-
formed on 401×400 lattice. The averaging is made
for 45 independently chosen samples. From the dy-
namical scaling argument, the asymptotic forms of
these quantities are expected as [5]

m(t) ∼ t−η/2z , (5)

fmm(t) ∼ t2/z. (6)

Thus we estimate z and η for several values of tem-
peratures. The results are shown in Figs. 3 and 4.
For the dynamical exponent z, which seems to be
located around 2 irrespective of temperature. For
the static exponent η, which is decreasing linearly
in the limit of T → 0. These behaviors are quite
similar with the XY model in two dimensions [7] in
which the existence of the KT transition has been
believed.

The present numerical study indicates that there
exists a KT transition in the RP2 model in two di-
mensions. In the NER analysis, we observe and
analyze relaxations up to an MCS where no size
dependence clearly appears. Thus, one may rec-
ognize that the observed behavior is that in the
thermodynamic limit.

[C class; 0K (A), 7500K (B)]
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Figure 4: Temperature dependence of the exponent
η inside the KT phase.
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[4] A. I. Fariñas Sànchez et al, Cond. Matter
Phys. 13 13601 (2010).

[5] Y. Ozeki, K. Ogawa and N. Ito, Phys. Rev.
E 67 026702 (2003), Y. Ozeki and N. Ito, J.
Phys. A: Math. Theor. 40 R149 (2007);

[6] Y. Ozeki and Y. Echinaka, Activity Report
2012 (Supercomputer Center, ISSP, 2013)

[7] Y. Ozeki, S. Yotsuyanagi, T. Sakai and Y.
Echinaka, Phys. Rev. E 89 022122 (2014).

2

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

202

nog
長方形

nog
長方形



Novel ordered phase and dynamical response under

driving field
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1 Quantum dynamics under
time-dependent external
field

1.1 Phase transitions in a cavity
driven by an external alternate
field

We have studied what kinds of cooperative
phenomena take place in systems driven by
an external alternate field. In particular, we
investigated a cavity system in which a sin-
gle cavity photon mode couples with many
discrete energy systems which we call ‘spin’
hereafter.[1] The spins are independent of each
other but they couple with each other by effec-
tive interaction due to the cavity mode. The
cavity mode is excited by a resonant external
field. The coupling between spin and cavity
mode composes a hybrid system where the en-
ergy spectrum exhibits an avoided level struc-
ture, which has been attracted from a view
point of information transfer between photon
system and condensed matter.[2] It is known
that the coupling causes the so-called Dicke
transition where the spontaneous excitation
appears even in the ground state, and also that
the coupling causes a non-equilibrium phase
transition which is called ‘optical bistability’
as a function of strength of external field.

The system is modeled by the Dicke model
or the model with rotation-field approximation
(Tavis-Cummings model).

H = h̄ω0a
†a+ h̄ωA

N∑
i=1

Sz
i ,

+h̄ĝ
N∑
i=1

(S+
i +S−

i )(a
†+a)+ ξ̂(a†+a) cos(ωextt).

(1)
where ω0 is a frequency of the cavity photon,
and ωA denotes the excitation energy of the
spin, and g is the strength of the coupling.
The last term is the external AC field whose
strength is ξ. We study the model with a quan-
tum master equation where we take into ac-
count the external driving field and dissipative
effect due to a coupling to the thermal bath.

First we drove a quantum master equation
in which effects of the interaction in the sys-
tem is taken into account. This adjustment is
necessary to reproduce the spontaneous sym-
metry breaking phenomena correctly. We also
pointed out that the mean-field approximation
holds in a proper scaling limits ĝ = g/

√
N and

ξ̂ =
√
Nξ, and studied cooperative phenom-

ena in the region of strong coupling (g) and
the strong driving ξ. We found a new type of
symmetry broken state, the region of which is
depicted by dots in the phase diagram (Fig. 1).

The mechanism of the new symmetry broken
state is given from the view point of the Co-
herent Destruction of Tunneling (CDT). The
lines denote the position where the spin sys-
tem is expected to show the CDT.

1.2 Landau-Zener dynamics in uni-
axial quantum spins

We have studied the Landau-Zener mechanism
in isotropic spin systems, where the dynam-
ics is independent of the total spin S. In
the case of classical spin in uniaxial spin sys-
tems, the so-called Stoner-Wohlfarth mecha-
nism takes place, and the spin dynamics has a
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Figure 1: Phase diagram of the driven Dicked
model (cited from [1]

threshold phenomenon at which the magneti-
zation jumps. In quantum system similar phe-
nomena takes place, which can be regarded as
a first order phase transition in quantum sys-
tem. We studied the nature of the metastable
state associated with the first order phase tran-
sition in quantum systems.

2 Other topics

2.1 Phase transitions of systems
with bistable states which have
different local lattice structures

We have pointed out the effects of long range
interaction due to elastic interaction of lattice
distortion which is brought by the different lo-
cal lattice structures of bistable states. This
mechanism is relevant in many systems, such
as the spin-crossover, Jahn-Teller system, and
martensite systems. We studied the effect of
long range interaction on the system with short
range antiferromagnetic model and obtained
full phase diagram for ferro- and antiferro-
magnetic short range interactions in the elastic
model.[3]. We also studied the nature of the
domain wall in such system where we found
that the width of the domain wall depends on
the time scale of spin dynamics[3].

In such systems with long range interac-
tion causes peculiar properties. We found the

present model holds the extensivity, but not
the additivity[5].

2.2 Phase transition between Mott
insulator and Itinerant ferro-
magnetism

We also studied quantum phase transition of
an itinerant ferromagnetism motivated by the
Nagaoka ferromagnetism. In the system the
electron density is controlled by the chemical
potential. The change of the total spin as a
function of the chemical potential is obtained
by an exact diagonalization and also DMRG
method. Various properties, such as magne-
tization process, the spin-correlation function,
and also entanglement entropy was studied[6].
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Transport phenomena in disordered topological

insulators
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Recent discoveries of two-dimensional quan-
tum spin Hall states and three-dimensional
topological insulators (TIs) have inspired ex-
tensive research for these novel materials. In
the impurity free systems where the transla-
tional invariance exists, the topological insula-
tor is characterized by the non-zero topolog-
ical numbers, which are defined via integral
over Brillouin zone. This definition is no longer
valid once the translational invariance is bro-
ken due to disorder. In this case, we usually
use edge/surface states to characterize TIs.

Here we study the bulk properties of the
disordered three-dimensional topological insu-
lators numerically, and show how to distin-
guish TI from ordinary insulators by investi-
gating the transport properties of bulk states.
We first calculate bulk conductance via trans-
fer matrix method, from which we draw the
phase diagram for disordered TI [1]. Along the
phase boundary between different TI phases,
we show that the Dirac semimetal emerges
even in the presence of disorder. With increase
of disorder, the Dirac semimetal undergoes
semimetal to metal transition. We propose
that the density of states exhibits novel sin-
gle parameter scaling behavior near the Dirac
semimetal to metal transition.

To confirm the scaling behavior, we have
performed large scale numerical calculation of
the density of states via kernel polynomial
method. We consider 200×200×200 cubic sys-
tems described by Wilson-Dirac Hamiltonian,
which are large enough to discuss approxi-

mately the thermodynamic limit. We then es-
timate the critical exponent ν for the length
scale to be ≈0.9, and the dynamical exponent
z to be ≈1.5, significantly different from those
of the Anderson transition (in which we ob-
tain ν = 1.38 ± 0.01 and z = 3 [2]). Scaling
relations of vanishing density of states, diverg-
ing diffusion constant, vanishing conductivity
as well as vanishing Dirac electron velocity are
derived [3].
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Figure 1: Density of states calculated in dif-
ferent phases: (a) on the boundary, (b) at the
tricritical point, and (c) in the metal phase.
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In heavily doped semiconductors, a zero
temperature metal-insulator transition (MIT)
is observed as a function of doping concen-
tration Nd. For samples with doping concen-
trations below a critical concentration Nc, the
conductivity extrapolated to zero temperature
σ(T = 0) is found to be zero, while for sam-
ples with concentrations exceeding this critical
concentration, σ(T = 0) is finite.

The object of this study is to understand the
MIT in doped semiconductors by determining
how the Coulomb interaction affects the criti-
cal behaviour of the Anderson transition. We
do this by simulating a model of a doped semi-
conductor that treats on an equal footing both
the disorder due to the random spatial distri-
bution of the dopants and the Coulomb inter-
action between the carriers.

To study a phase transition, we need to con-
sider a reasonably large number of electrons, so
exact diagonalization is impractical. Instead
we use the Kohn-Sham formulation of density
functional theory. The local density approx-
imation (LDA) is adopted. We then observe
a localisation-delocalisation transition of the
highest occupied Kohn-Sham eigenfunction as
a function of donor concentration. Simulations
were performed for system sizes in the range
L = 229 ∼ 400Å and donor concentrations of
Nd = N/L3 = 0.4 ∼ 1.3 × 1018cm−3, which
corresponds to 5 ∼ 85 electrons. We set the
finite difference grid spacing to 18 Bohr, which
is about half of the effective Bohr radius for
Si. The donors were randomly distributed on
a simple cubic lattice with spacing 36 Bohr.
This avoids the situation that two donors are

unphysically close. The number of samples
for each system size and donor concentration
varies between 1500 and 3000.

Applying a multi-fractal finite size scaling
method [1], we find that the model exhibits
a localization-delocalization transition at ap-
proximately the right carrier concentration
(see Figure 1) [2]. Moreover, we find that the
critical exponent ν ≈ 1.3, which is different
from that for the standard Anderson transi-
tion.
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Figure 1: The generalized multi-fractal expo-
nent α0 as a function of donor concentration
for several system sizes. The solid lines are a
finite size scaling fit to the data. The critical
concentration is indicated by an arrow.
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As a next-generation information technol-
ogy, quantum information technology has been
attracted attention in science. In addition,
quantum information science opens a new win-
dow on a wide area of physics, e.g., quantum
statistical physics. We studied the following
two topics in this project[1, 2, 3, 4].

(a) Quantum Annealing for Clustering
Problem[1, 2]

In general, it is hard to obtain the best so-
lution of optimization problems. Optimiza-
tion problems are widespread in science and
technology and efficient algorithms have been
proposed. Most of combinatorial optimization
problems can be mapped onto random Ising
model and its generalized model. Thus, devel-
opment of such algorithms have been done in
statistical physics.

In 1998, Kadowaki and Nishimori proposed
a versatile algorithm called quantum anneal-
ing to obtain the best solution by gradually
decreasing quantum fluctuation[5]. The quan-
tum annealing is an alternative to the simu-
lated annealing [6] in which the temperature
(i.e., thermal fluctuation) gradually decreases.
The efficiency of quantum annealing has been
considered for a long time using simple models.
In addition, very recently, actual equipment of
quantum annealing has been developed[7].

To examine the performance of quantum
annealing, we considered quantum annealing
to solve a clustering problem which is a typ-

ical applicable optimization problem[1]. In
our quantum annealing, not only the quantum
fluctuation but also the thermal fluctuation are
simultaneously controlled. As a result, the ef-
ficiency of quantum annealing is better than
that of simulated annealing although compu-
tational costs of both methods are comparable.
In this study, we performed the Monte Carlo
simulation based on parallel computation.

The performance of quantum annealing is
not good for systems in which phase transi-
tion occurs. This fact is known as difficulty
in the quantum annealing. In order to avoid
the difficulty, we also considered another type
of fluctuation to add the Hamiltonian which
represents optimization problems[2].

The above studies were done in collabo-
ration with Kenichi Kurihara (Google Inc.),
Seiji Miyashita (The University of Tokyo), Hi-
roshi Nakagawa (The University of Tokyo), Is-
sei Sato (The University of Tokyo), and Ryo
Tamura (National Institute for Materials Sci-
ence).

(b) Entanglement Properties of Two-
dimensional Quantum Systems[3, 4]

Entanglement properties have been consid-
ered in not only quantum information sci-
ence but also various fields of physics such
as quantum statistical physics. Some beau-
tiful relations between entanglement proper-
ties and strongly correlated quantum systems
have been found. We have considered entan-
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glement properties of two-dimensional quan-
tum systems[3, 4]. A part of this study is now
in progress. The obtained results in this study
will be reported elsewhere.

The above study was done in collaboration
with Hosho Katsura (Gakushuin University,
The University of Tokyo) and Ryo Tamura
(National Institute for Materials Science).
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Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502

Investigation of relation between underly-
ing properties in considered models and phase
transition behavior is an important topic in
statistical physics. In addition, how to control
phase transition nature is also an interesting
issue. We considered the following two topics
in this project[1, 2].

(a) Network growth rule dependence of
fractal dimension[1]

It is well-known that conventional perco-
lation transition in static models is continu-
ous phase transition. The critical exponents
depending on spatial dimension were investi-
gated. However, there are new type of perco-
lation transitions in dynamical network model.
In 2009, Achlioptas et al. proposed a new type
of network growth rule and considered perco-
lation transition behavior[3]. They concluded
that a discontinuous phase transition occurs
using their network growth rule while a con-
tinuous phase transition occurs under conven-
tional network growth rules. We constructed
a rule that includes the conventional rule and
the Achlioptas rule. In our rule, a parameter
q which expresses network growth rule is in-
troduced. The relation between the parameter
q and geometric properties at the percolation
point was investigated using Monte Carlo sim-
ulations. In particular, we focused on the frac-
tal dimension of the percolated cluster at the
percolation point. As a result, the fractal di-
mension increases as the network growth rule

approaches the Achlioptas rule.
This work was done in collaboration with

Ryo Tamura (National Institute for Materials
Science).

(b) Relation between the Potts model
with invisible states and frustrated spin
systems[2]

Recently, frustrated systems where the or-
der parameter is described by the direct prod-
uct between two groups have been studied. In
these systems, unconventional phase transition
often occurs. Tamura and Kawashima found
that a first-order phase transition with C3

symmetry breaking occurs in two-dimensional
frustrated systems where the order parame-
ter space is SO(3) × C3[4, 5]. To explain the
phase transition nature qualitatively, the Potts
model with invisible states was introduced[6,
7]. By introducing a local parameter in frus-
trated systems, we considered the relation be-
tween the Potts model with invisible states
and frustrated spin systems using Monte Carlo
simulations. We also estimated the effective
interaction of the Potts model with invisible
states in frustrated systems using the Curie-
Weiss type analysis. This study is closely re-
lated to other unconventional phase transition
observed in other frustrated systems[8, 9].

This work was done in collaboration with
Naoki Kawashima (Institute for Solid State
Physics, The University of Tokyo) and Ryo
Tamura (National Institute for Materials Sci-
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ence).
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Analysis of Quantum Phase Transitions with Large

Finite-Size Effect

Synge Todo

Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

Quantum phase transitions are phase transi-

tions between two different ground states that

are triggered by quantum fluctuations at ab-

solute zero temperature. We develop various

novel and powerful techniques to tackle var-

ious exotic quantum critical phenomena ob-

served in quantum spin systems and performed

large-scale and high-precision simulations on

the ISSP supercomputer system.

Quantum Monte Carlo simulation with

dynamic control of anisotropy [1]

In systems with strong spatial anisotropy, it

is often difficult to carry out the conventional

finite-size-scaling analysis due to large correc-

tions to scaling. To overcome this difficulty,

we develop a novel algorithm where the aspect

ratio of the system is optimized dynamically

during the Monte Carlo update so that the

isotropy is recovered virtually. The optimiza-

tion is done by the Robbins-Monro machine-

learning algorithm. Using this method we

can determine the quantum critical points pre-

cisely as well as the critical exponents of sev-

eral physical quantities. We establish that the

staggered and columnar dimer models both

belong to the conventional O(3) universality

class but the optimal aspect ratio of the for-

mer model shows the non-monotonic behavior,

which comes from the weakly irrelevant cubic

term. We also extend out scheme to the quan-

tum critical point with z > 1.

Quantum Monte Carlo measurement of

local Z2 Berry phase [2]

We develop a loop cluster algorithm Monte

Carlo method for calculating the local Z2

Berry phase of the quantum spin models. The

Berry connection, which is given as the inner

product of two ground states with different lo-

cal twist angles, is expressed as a Monte Carlo

average on the worldlines with fixed spin con-

figurations at the imaginary-time boundaries.

The “complex weight problem” caused by the

local twist is solved by adopting the meron

cluster algorithm. We also propose that the

gauge-fixed local Berry connection can be an

effective tool to estimate precisely the quan-

tum critical point. In addition, we extend

the present technique to SU(N) spin mod-

els, where N topologically different phases can

be distinguished successfully by the local ZN

Berry phase.

BCL: Balance Condition Libray [3]

We have introduced a novel geometric ap-

proach that breaks the detailed balance of the

Markov chain explicitly (while keeping the (to-

tal) balance satisfied) and minimizes (often

eliminates) rejection rate. We are now devel-

oping the open-source library, BCL (Balance

Condition Library), which provides a C++

reference implementation of our algorithm to-

gether with the Metropolis-Hasting and Gibbs

sampler in Markov Chain Monte Carlo, as well

as the API for C, Fortran, Python, etc.
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Development and application of a new quantum Monte Carlo 
Algorithm for lattice bosons 

 
Akiko Masaki 

Institute for Solid State Physics, 
The University of Tokyo, Kashiwa-no-ha, Kashiwa, Chiba 277-8581 

 
Large-scale computations have the 

possibility of solving many important 

remaining problems in quantum many-body 

physics. Recently high-performance computers, 

e.g. K-computer, have gained its FLOPS using 

many cores. Namely the parallelization of 

algorithms is an effective way to solve these 

remaining problems. The worm algorithm [1, 2] 

which has the broad range of applicability is a 

most efficient global-update algorithm for the 

world-line quantum Monte Carlo method. 

However the parallelization of the worm is not 

straightforward because of the event-driven 

motions of a worm that is a single-point object 

in the configuration space. 

Based on the directed-loop algorithm [2] we 

investigated the parallelizable multi-worm 

algorithm (PMWA) where multiple worms are 

introduced by an artificial source field η and the 

configuration space decompose into domains 

[3]. We estimate physical observables by 

extrapolation to η = 0 imit. Introducing 

multiple-worms requires the different 

procedure from the conventional worm 

algorithm so as to satisfy the detailed balance 

condition. Our algorithm satisfies it. In 

addition, the propagation of worms between 

domains and the update of states on domain 

boundaries are effectively carried out by 

communications between domains so that the 

ergodicity is recovered. PMWA is applicable to 

the soft-core Boson model and the quantum 

spin model without the negative-sign problem 

as with the conventional worm algorithm. 

 

 

Figure 1: The configuration space of PMWA. 

 

We applied PMWA to the extended Hard-

core Bose-Hubbard model on square lattice 

defined by 

where bi (bi†) is the annihilation (creation) 

operator at i th site, t is the hopping energy, V 
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is the nearest-neighbor interaction and µ 

denotes the chemical potential respectively. 

Firstly we derived the extrapolation rule to 

obtain physical quantities at η = 0. Then we 

confirmed that extrapolated PMWA result 

shows the agreement with DLA results. 
We accomplished simulations of up to the 

size of L × L × β = 10,240 × 10,240 × 

16 using 3,200 processing cores, where L is 

the number of the lattice site per spatial 

direction and β is the inverse of temperature. 

This size is extremely larger than the workable 

size of the conventional worm algorithm with 

single processor. We measured the standard 

error as a function of the number of domains N 

to estimate the performance of the algorithm. 

As a result, we found  a weak effect of N for 

the relaxation time by the simulation with fixed 

number of the Monte Carlo steps. Moreover, 

when we compare with the DLA results, 

PMWA results is more accurate than DLA in 

fixed wall-clock time with N > 8. 
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Morphology of Lipid Vesicles: effects of confinement

and genus

Ai Sakashita and Hiroshi Noguchi
Institute for Solid State Physics, University of Tokyo

Kashiwa-no-ha, Kashiwa, Chiba 277-8581

Cell organelles such as Golgi apparatus, en-
doplasmic reticulum, and mitochondria have
very complicated shapes; Among these or-
ganelles, mitochondria have a specific feature,
i.e., it consists of two bilayer membranes. The
nuclear membrane and endoplasmic reticulum
are connected and together form complicated
shapes. The nucleus is wrapped by two bilayer
membranes connected by many lipidic pores.
Thus, its shape is considered as a stomato-
cyte of a high-genus vesicle connected with a
tubular network. We focus on geometrical con-
straints and investigated a vesicle confined in a
spherical vesicle [1] and non-zero genus vesicles
[2] using the dynamically triangulated surface
model.

Figure 1 shows examples of vesicle shapes
confined in a sphere [1]. Reduced volume
vr, area difference ∆a, and the volume ratio
vcon of the inner vesicle to the outer sphere
are three parameters to determine the vesicle
shape. Under a strong confinement, an addi-
tional bud is formed in a stomatocyte in order
to fill the volume between the vesicles. In the
limit vr → 1, this double stomatycote is the
most stable shape. At vr ≃ 0.9, other novel
shapes can be found in equilibrium. As ∆a in-
creases, a stomatocyte transforms into a vesi-
cle with a planar slit and subsequently forms
a doublet. As negative values of ∆a, the inner
bud forms a tubular or discocyte shape. This
discocyte bud resembles the crista structures
in mitochondria.

For genus-1 toroidal vesicles, we obtained
the free-energy profiles using a generalized en-
semble Monte Carlo method [2]. At large vr,
obtained vesicle shapes agree with the previous
theoretical results for axisymmetric shapes:

double-necked stomatocyte, discoidal toroid,
and circular toroid. However, for small vr,
it is found that a non-axisymmetric discoidal
toroid and handled discocyte exist in ther-
mal equilibrium in the parameter range, in
which the previous theory predicts axisymmet-
ric shapes. The entropy caused by shape fluc-
tuations slightly modifies the stability of the
vesicle shapes.

We have also observed a liposome confined
in a spherical liposome and genus-1 and 2 li-
posomes using a fast confocal laser microscopy.
Our simulation results reproduce shape trans-
formations observed in our experiments well.

Figure 1: Snapshots of a vesicle confined in a
sphere. (a) Double stomatocyte. (b) Doublet.
(c) Triplet.
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Efficient sampling simulation of  
the soft modes significantly contribute to protein properties 

 

Akio KITAO 

Institute of Molecular and Cellular Biosciences, University of Tokyo 

 

Biological processes are often associated 

with significant conformational changes of 

biomolecules, which are relevant to their functions. 

The free energy landscape (FEL) along appropriate 

reaction coordinates provides us essential 

information to characterize the mechanism of 

conformational changes and functions. In this sense, 

efficient and accurate sampling of the 

conformational space to calculate the FEL is a 

major topic for molecular dynamics (MD). Let 

ሻ࢞ሺࣂ  be collective variables (CVs) defined as 

functions of ࢞, where ࢞ is the Cartesian coordinate 

of atom. Supposing that ࢠ  is a particular 

realization of these CVs, the FEL ܨሺࢠሻ is defined 

as: 

ሻࢠሺܨ 

ൌ െ
1
ߚ ln ൝ܳ

ିଵ න ݁ିఉ௏ሺ࢞ሻෑߜሺߠ௟ሺ࢞ሻ
௅

௟ୀଵ

െ ௟ሻݖ  ,ൡ࢞݀

(1)

where ܳ ൌ   ,L is the number of CVs ,࢞ሻ݀࢞ఉ௏ሺି݁׬
ܸሺ࢞ሻ is the potential energy, ߜ  is Dirac’s delta 

function, and ߚ ൌ 1/݇஻ܶ , where kB is the 

Boltzmann constant and ܶ is the temperature. If 

ሻ࢞ሺࣂ  can be regard as appropriate reaction 

coordinate, the goal is to calculate ܨሺࢠሻ. 
However, sampling of large conformational 

space within a limited simulation time is still a 

challenging problem, because of complexity of FEL 

and the large gap between simulation time step and 

time scale of biological process. In order to tackle 

the difficulty, we proposed a new efficient 

conformational sampling method, Multi-scale 

Sampling using Temperature Accelerated and 

Replica-exchange MD (MuSTAR MD) [1]. 

MuSTAR MD is an extension of 

temperature accelerated MD (TAMD) and can also 

be considered as a variation of replica-exchange 

MD (REMD). In the MuSTAR MD simulation, 

each replica contains an all-atom model, at least one 

coarse-grained model, and a CVs that interacts with 

the other models through coupling terms. The 

coarse-grained model is introduced to drive 

efficient sampling of large conformational space 

and the all-atom model can serve to conduct 

accurate conformational sampling. Equations of 

motion for MuSTAR MD consists of Cartesian 

spaces and CV space, 

 
݉௜
ఈ࢞ሷ ௜ఈ ൌ െ

߲ܸఈሺ࢞ఈሻ
௜ఈ߲࢞

െ
߲ܹఈሺ࢞ఈ, ሻࢠ

௜ఈ߲࢞

൅ ሺݐhݎ, ఈሻߚ

ൌ െ
߲ܷఈሺ࢞ఈ, ሻࢠ

௜ఈ߲࢞

൅ ሺݐhݎ,  ,ఈሻߚ

(2)

 

݉௭ݖሷ௟ ൌ െ෍
߲ܹఈሺ࢞ఈ, ሻࢠ

௟ݖ߲

ே

ఈ

൅ ሺݎ݄ݐ, .௭ሻߚ (3)

where ࢞௜ఈ  and ܸఈሺ࢞ఈሻ are the position vector in 

Cartesian coordinate for the ݅-th atom of model ߙ 

and potential energy functions in each model, 

respectively, and ܹఈሺ࢞ఈ,  ሻ is the coupling termsࢠ

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

215



 

Figure  FEL of Ala-dipeptide in vacuum using the 

AMBER force field parm99SB with respect to backbone 

dihedral angles ߶ and ߰. The results from (a) MuSTAR 

MD (10 ns×8 replicas), (b) TAMD (80ns),(c) REMD (10 

ns×8 replicas), (d) REUS (5nsx16), (e) CMD (80 ns). 

between model α and the CV system. α can represent 

either fine-grained or coarse-grained model. The 

thermostat parameters are related to temperatures as 

ఈߚ ൌ 1/݇஻ܶఈ  and ߚ௭ ൌ 1/݇஻ܶ௭ . The coupling 

terms are defined as: 

 

ܹఈሺ࢞ఈ, ሻࢠ ൌ
ఈܭ

2
෍ሺߠ௟ሺ࢞ఈሻ െ ௟ሻଶݖ
௅

௟ୀଵ

, (4)

 ܷఈሺ࢞ఈ, ሻࢠ ൌ ܸఈሺ࢞ఈሻ൅ܹఈሺ࢞ఈ, ሻ, (5)ࢠ

where ܭఈ is the coupling-strength between model 

α and the CV system. The parameters are 

exchanged between neighboring replicas in some 

interval obeying the Metropolis method. 

We applied MuSTAR MD for typical test 

cases, Ala-dipeptide in vacuum. Figures (a)-(e) are 

FELs at 300 K calculated from the results of 

MuSTAR MD, TAMD, REMD, replica-exchange 

umbrella sampling (REUS) and conventional MD 

(CMD), respectively. The sampled conformational 

space obtained from same simulation time is 

broader in the order of MuSTAR MD>TAMD> 

REMD>REUS>CMD. In addition, among five 

methods examined, MuSTAR MD showed the 

closest results to that obtained from long-time 

umbrella sampling simulation.  

MuSTAR MD shows the high 

performance in sampling efficiency and accuracy 

compared to established enhanced sampling 

methods. The advantageous features of MuSTAR 

MD are: 1) High temperature of the CV system 

enhances conformational sampling. 2) Multiple 

coarse-grained models can be introduced to guide 

the system to move to multiple structures. 3) 

Applications to larger system are expected to be 

relatively easy. The proposed methods are expected 

to be applied to the further computational studies of 

biological phenomena including large 

conformational change, such as allosteric transition. 
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Data Analyses and Visualization of Bubbles

Th Hiroshi WATANABE

Institute for Solid State Physics, University of Tokyo

Kashiwa-no-ha, Kashiwa, Chiba 277-8581

A rapid increase in computational power al-

lows us to simulate huge scale systems. How-

ever, as the size of simulation increases, the

amount of data also increases and becomes

quite huge which is difficult to process for fur-

ther analysis. Therefore, some device is re-

quired to process such huge data. Visualiza-

tion of data is also important. Appropriate

visualization not only allows us to understand

physical phenomena in an intuitive way, but

may serve as a trigger of new discoveries. How-

ever, there is no general guide of visualization

and we have to appropriate method according

to problems. In this manuscript, we report on

some devices to process huge data and their

visualization.

We perform molecular dynamics simulations

of multi-bubble nuclei involving up to 730 mil-

lion particles on K-computer. If we store all

data of position of particles, it requires 17GB

per frame. Since one run involves about 1000

frames, the total amount of data could be

17TB per run, which is not impossible but un-

realistic. Therefore, some kinds of compres-

sion are compression to store data for further

analysis. While it is preferable to reduce the

total amount of data, the important informa-

tion should not be lost. We therefore divide

the system into small subcells and count the

number of particles in each subcell and store

it as an integer (data type unsigned char in

C language) instead of storing the local den-

sity with floating-point variables. The size of

the subcells are determined so that the number

of particles will not exceed 255, which is the

maximum value of unsigned char. The num-

ber of subcells of the largest run is 32768000,

i.e., 32.7MB per fame. Therefore, we have suc-

ceeded to compress the data by 500 times. Ad-

ditionally, we do not have to care about the

byte order, since we use unsigned char which

is free from the byte-order problem.

The picture is a visualization of bubbles us-

ing our data format. We define a subcell to be

in the gas state when its density is less than

some threshold, and identify the bubbles us-

ing the site-percolation criterion on the simple

cubic lattice [1]. After identifying bubbles, we

compute a center of inertia and volume of each

bubble and draw bubble as sphere. From the

information of the spheres, the image is pro-

duced by POV-Ray [2]

References

[1] H. Watanabe, M. Suzuki, and N. Ito:

Comput. Phys. Commun. 184 (2013)

2775.

[2] ⟨http://www.povray.org⟩

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

217

nog
長方形



Theoretical Study on Magnetic Refrigeration using

Ising Model

Ryo TAMURA

International Center for Young Scientists, National Institute for Materials Science

1-2-1, Sengen, Tsukuba-city, Ibaraki, 305-0047

Magnetic refrigeration is a cooling technol-

ogy which has attracted attention in energy

science as an alternative to gas refrigeration.

Magnetic refrigeration uses magnetocaloric ef-

fect which is a cross correlated phenomenon

between the heat and the magnetic degree of

freedom. In most experimental studies, mag-

netic refrigeration efficiency was estimated by

the entropy change when the magnetic field is

changed from 0 to finite H in isothermal pro-

cess. Magnetic materials with large entropy

change are regarded as a good material since

these absorb large amount of heat. From this

point, ferromagnets near the Curie tempera-

ture is a good magnetic refrigeration material.

Experimental studies on magnetic refrigera-

tion have been aggressively done throughout

the world.

Our purpose is to propose a method that

utilizes the underlying magnetic refrigeration

effect in magnetic materials including nonfer-

romagnets. We considered the Ising model on

a cubic lattice:

H = −Jab
∑

⟨i,j⟩ab

sisj − Jc
∑
⟨i,j⟩c

sisj −H
∑
i

si,

si = ±1

2
,

where the first and second terms represent

nearest-neighbor interactions on ab-plane and

along c-axis, respectively, and the third term

denotes the Zeeman term.

We considered four types of signs of interac-

tions: (a) Jab > 0, Jc > 0; (b) Jab < 0, Jc > 0;

(c) Jab > 0, Jc < 0; (d) Jab < 0, Jc < 0. The

ground states of each case are (a) Ferromag-

netic state (the corresponding wave vector is

(000)), (b) A-type antiferromagnetic state (the

corresponding wave vector is (ππ0)), (c) C-

type antiferromagnetic state (the correspond-

ing wave vector is (00π)), and (d) G-type an-

tiferromagnetic state (the corresponding wave

vector is (πππ)). We calculated the magnetic

entropy as a function of temperature and mag-

netic field of this model whose linear dimen-

sion is up to L = 16 using the Wang-Landau

method[2]. The Wang-Landau method can di-

rectly calculate the density of states and the

absolute value of magnetic entropy without in-

tegrating the specific heat. In ferromagnetic

phase and paramagnetic phase, the magnetic

entropy decreases as the magnetic field in-

creases at fixed temperature. However, the

magnetic entropy as a function of magnetic

field at fixed temperature T has a peak at fi-

nite magnetic field Hmax(T ) in antiferromag-

netic phases. From the obtained results, we

proposed a new protocol to obtain the max-

imum magnetic refrigeration efficiency in the

isothermal process: The magnetic field should

be changed from Hmax(T ) to H. This method

can be applied not only antiferromagnets but

also general types of magnetic materials. Fur-

thermore, the proposed protocol is the same

as the conventional one for ferromagnets and

paramagnets.

This work was done in collaboration with

Takahisa Ohno (NIMS) and Hideaki Kitazawa

(NIMS).
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Investigation of Phase Transitions and Their

Microscopic Mechanisms in Frustrated Spin Systems

Ryo TAMURA

International Center for Young Scientists, National Institute for Materials Science

1-2-1, Sengen, Tsukuba-city, Ibaraki, 305-0047

Geometrically frustrated spin systems often

exhibit unconventional phase transitions and

dynamic behaviors, which are not observed in

unfrustrated spin systems. We investigated

phase transition nature in two geometrically

frustrated spin systems[1, 2].

– Simultaneous occurrence of Z2 vor-

tex dissociation and second-order phase

transition[1]

We considered the Heisenberg model with

the nearest-neighbor and the third nearest-

neighbor interactions on a distorted triangular

lattice. We focused on the case that the order

parameter space is described by SO(3) × Z2.

SO(3) and Z2 correspond to global rotation

symmetry of spins and lattice rotation symme-

try, respectively. The long-range order of spins

at finite temperatures is prohibited by the

Mermin-Wagner theorem[3]. Instead, the Z2

vortex dissociation related to SO(3) symmetry

occurs at finite temperature, which was first

pointed out by Kawamura and Miyashita[4].

We considered finite-temperature properties of

the model using Monte Carlo simulations. A

second-order phase transition with Z2 symme-

try breaking was observed. In addition, it was

found that Z2 vortex dissociation occurs at

the second-order phase transition point. By

the finite-size scaling, we concluded that the

second-order phase transition belongs to the

two-dimensional Ising universality class, which

suggests that the Z2 vortex dissociation does

not affect the critical phenomena. To our

knowledge, this is the first example to exhibit

Z2 vortex dissociation at the critical point.

This work was done collaboration with Shu

Tanaka (The University of Tokyo, Kyoto Uni-

versity) and Naoki Kawashima (Institute for

Solid State Physics, The University of Tokyo).

– Strange behavior of latent heat in a

geometrically frustrated spin system[2]

We studied phase transition behavior of the

Heisenberg model with the nearest-neighbor

and the third nearest-neighbor interactions on

a stacked triangular lattice. This is three-

dimensional version of the studies in Refs.[5,

6, 7]. We focused on the case that the order

parameter space is represented by SO(3)×C3.

SO(3) and C3 correspond to global rotation

symmetry of spins and lattice rotation sym-

metry, respectively, which is similar with two-

dimensional case as described before. Temper-

ature dependence of each order parameter was

obtained by Monte Carlo simulations, which

indicates that the first-order phase transition

with SO(3)×C3 symmetry breaking occurs at

finite temperature. We also considered inter-

layer interaction dependence of transition tem-

perature and latent heat. As the interlayer in-

teraction increases, the transition temperature

increases but the latent heat decreases. The

latter behavior is not observed in usual unfrus-

trated spin systems such as the ferromagnetic

Potts model.

This work was done collaboration with Shu

Tanaka (The University of Tokyo, Kyoto Uni-

versity).
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Multiscale Simulation for Soft Matter: 
Sol-Gel Transition in Wormlike Micellar Solution during Flow 
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Aramaki-Aza-Aoba, Aoba-Ward, Sendai, Miyagi 980-8578 

 

Surfactant is an important material for our 

daily life. Surfactants spontaneously aggregate 

in a solvent because it consists of a hydrophilic 

head group and a hydrophobic tail group and 

shows a variety of complex structure: sphere, 

cylinder, lamellar, cubic and sponge structures. 

Self-assembled surfactants in a solvent make a 

curved membrane with a hydrophilic and 

hydrophobic layer. According to the 

concentration of surfactants, the size of the 

membrane changes, and the structure of micelle 

is selected in order to minimize the elastic 

curvature energy. A particle-field hybrid 

method implementing the kinetic Monte-Carlo 

method taking account of the Helfrich’s 

bending energy of a membrane with Langevin 

thermostat [1] has succeeded in describing the 

sol-gel phase diagram of dilute micellar 

solution in equilibrium and a shear-induced 

instability which is found as an negative slope 

in shear stress. This instability comes from the 

breakup process of micellar branches and will 

lead to  shear banding [1].  However, it is tough 

to simulate a macroscopic flow behavior such 

as shear banding in a particle-field hybrid 

method because a quite large number of 

degrees of freedom are needed to simulate a 

fluid dynamic behavior.  

We have developed multi-scale simulation 

technique bridging the macroscopic fluid 

dynamics and microscopic (mesoscopic) 

molecular dynamics to simulate a fluid 

dynamic behavior of entangled polymer melt 

[2, 3].  Applying this method to the particle-

field hybrid method, we can simulate a fluid 

dynamic behavior of the micellar solution [4, 

5]. In the multi-scale simulation, the 

microscopic simulator is used as a constitutive 

equation in general fluid dynamic simulation. 

Applying a shear to the microscopic simulator, 

the stress tensor is obtained according to the 

structure of micelles. The updated stress tensor 

drives the flow to balance the stress tensors 

among the fluid elements.  The multi-scale 

simulation alternately updates mactorsopic flow 

field and microscopic micellar structure. 

We have investigated a channel flow of the 

micellar solution. The macroscopic fluid 

system is divided into Ne fluid elements and 

each fluid element has Ns simulators. The total 

number of the microscopic simulators in this 

system is Nt = Ne × Ns. When the number of 
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CPUs is equal to Nt or the integral multiple of 

Nt, the multi-scale simulation is most efficient. 

On System B (SGI Altix ICE 8400EX) with 

1024 cores, the weak scaling parallel efficiency 

of our multi-scale simulation is almost 100 % 

as shown in Fig 1 because the microscopic 

simulators are independent of the others during 

a time-interval of a fluid dynamic simulation 

and the time of communication is negligibly 

small in a total computation time.  

 

Fig:1  Weak scaling parallel efficiency 

To decrease the noise coming from the low 

number of static samples (the number of 

molecules in a simulation box), we need more 

than 100 simulation box per one fluid element. 

To resolve the macroscopic fluid dynamics in a 

channel, we need to divide a channel into more 

than 20 fluid elements. Thus, we select Ne = 24 

and Ns = 128, namely Nt = 3,072. Each 

simulation box has 3,000 particles which 

represent spherical micelles and then each fluid 

element is described by using 384,000 particles. 

On System B with 1024 cores, this simulation 

takes 0.75 sec per unit time interval. The noise 

in stress tensor is sufficiently small and we can 

investigate the time evolution of the multiscale 

simulation of micellar solution. Initial condition 

of the micellar solution is sol state where the 

spherical micelles are randomly distributed. 

The micelles spontaneously aggregate and 

make wormlike micelles during a flow in a 

channel. The growth of wormlike micelles 

results in a gel state. This situation mimics a 

real process where miceller solution starts to 

flow immediately after surfactants are put into 

water. Even if we apply high pressure 

difference between upstream and downstream, 

this initial transition from sol to gel is observed. 

The velocity gradient increases near the wall. 

The state of micellar solution near the wall 

changes from gel to sol under the high velocity 

gradient field. The sol region develops from the 

vicinity of the wall to the bulk. The transition 

from gel to sol in the vicinity of the wall is 

clearly observed as increasing the pressure 

difference between upstream and downstream. 
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Numerical Study of Coulomb Glass 

 

Takamichi TERAO 

Department of Electrical, Electronic and Computer Engineering, 

Gifu University, Yanagido 1-1, Gifu 501-1193 

 

Electronic states in Coulomb glass, in which 

the disorder and many-body electron-electron 

interaction are incorporated, have been 

extensively studied during the last few decades. 

The properties of compensated doped 

semiconductors, ultrathin films, and granular 

metals are well described by these Coulomb-

glass models. Most of the past numerical 

studies have been devoted to examining the 

properties of Coulomb glasses in equilibrium, 

and they have shown the existence of a 

Coulomb gap at the Fermi level. Recent 

experiments have demonstrated the non-

equilibrium nature of Coulomb glasses, such as 

logarithmic relation, aging, and memory effects 

below some critical temperature.  

      In this study, kinetic Monte Carlo 

simulations of disordered thin films, in which 

strongly interacting electrons hopping between 

randomly distributed sites that correspond to 

the localization centers of the single-electron 

wave functions, have been performed [1,2]. At 

first, the two-time autocorrelation function 

 , WC t t has been calculated to clarify the non-

equilibrium nature of interacting electrons in 

disordered thin films. The waiting time Wt   is 

the time elapsed since the quenching from an 

infinite temperature. The function  , WC t t  is 

the overlap of the charge configurations at 

times 
Wt t  and Wt . We have confirmed aging 

phenomena in the autocorrelation function 

 , WC t t  (Figure 1).  

      In addition, the temperature dependence of 

the mean square displacement (MSD) of 

electrons has been investigated to clarify the 

microscopic dynamics of electrons, and a 

crossover from diffusive to subdiffusive 

behavior has been observed. These results 

imply that there is a characteristic temperature 

Tc in this system, and the dynamical behavior 

such as the relaxation and diffusive motion of 

electrons changes at cT T , which reflects the 

glassy behavior of this system with lower 

temperature regime.  

 

 

Fig. 1: Two-time autocorrelation function  

            WttC ,  
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Physical properties of low-dimensional electron

systems created on solid surfaces and their control

Takeshi INAOKA
Department of Physics and Earth Sciences, Faculty of Science,

University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213

This academic year, we investigated col-
lective excitations of two-dimensional electron
systems with ultralow density and the strain
effect on the band structure of bulk silicon (Si)
and germanium (Ge). The latter investigation
of the strain effect forms a basis to understand
the strain effect on subbands formed at sur-
faces or interfaces.

(1) Exchange-correlation and temper-
ature effects on plasmons in strong-
lycorrelated two-dimensional electron
systems [1]
In two-dimensional (2D) electron systems with
ultralow density, electrons are strongly corre-
lated, which has striking exchange-correlation
(XC) effects on the 2D plasmons (PLs) in these
systems. By means of the finite-temperature
local-field correction, we examined the 2DPLs
in a density-parameter range of 9.1 ≤ rs ≤ 21.8
and a temperature range of 0.5 ≤ T/TF ≤ 8.4
(normalized by Fermi temperature TF). We
analyzed the PL dispersions that were ob-
served from single quantum wells by Raman
spectroscopy. With increasing wave number
q, the XC effects start to operate to lower
the PL energy strikingly. This operation
is more remarkable at lower electron densi-
ties. Even in our strongly correlated and ex-
tremely nondegenerate 2D electron systems,
the size of the XC holes can be well normal-
ized by inverse Fermi wave number k−1

F . From
comparison with the experiment, the finite-
temperature localfield correction (Singwi-Tosi-
Land- Sjölander approximation) is expected to
describe the PLs quantitatively in a smaller q
range of q . kF, but in a larger q range of
q & kF, this correction begins to overestimate

the XC effect. With an increase in temper-
ature, the PL dispersion curve goes up strik-
ingly in a larger q range. This remarkable T
dependence can be ascribed largely to the T
dependence of the constituent electronic tran-
sitions of the PLs through the Fermi-Dirac dis-
tribution function. We performed the above
calculation on the system A.

(2) Internal-strain effect on the va-
lence band of strained Si [2]
Now that performance enhancement of Si de-
vices due to downsizing begins to show its lim-
itations, one promising solution is to change
the band structure by applying strain in or-
der to realize higher mobility. By means of
the local density-functional method including
the spin-orbit interaction, we examined the ef-
fect of internal strain, namely, relative atom
displacement of two atoms in the crystal unit
cell on the valence band of strained Si. We
analyzed the [111] ([110]) band dispersion for
[111] ([110]) uniaxial compression and (111)
((110)) biaxial tensility, because the hole effec-
tive mass m∗ becomes conspicuously small in
the [111] ([110]) direction for these strain types
[3]. Under the practical condition of no nor-
mal stress, uniaxial compression (biaxial ten-
sility) entails additional normal tensility (com-
pression) and internal strain. We achieved the
total-energy minimum with a change in both
normal and internal strain. The above uni-
axial compression or biaxial tensility lifts de-
generacy of the upper two valence bands at
the Γ point, and the band with a conspicu-
ously small m∗ value projects above the other
two around the Γ point. With increasing inter-
nal strain, the energy separation between the
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highest and second-highest bands, E1−E2, be-
comes dramatically larger, and the band with
the effective-mass ratio m∗/me = 0.10 − 0.11
extends remarkably down to a lower energy re-
gion, until it crosses or gets admixed with the
second-highest band. This holds true to all the
strain types and strain orientations considered
here. We found that this band variation due
to internal strain is strongly correlated with
the change in the specific bond angles in the
tetrahedral unit cell. Some angles are closely
related to the highest valence band which in-
cludes stronger coupling in the [111] or [110]
direction, namely, which has stronger disper-
sion in this direction, while other angles are
strongly correlated with the second-highest va-
lence band which involves stronger coupling in
the (111) or (110) plane, namely, which has
weaker dispersion in the [111] or [110] direc-
tion. The change in these two types of bond
angles due to internal strain can reasonably ex-
plain the conspicuous growth in E1-E2. Details
are given in [2]. To do the above calculation,
we used the program package ’ABINIT’ [4,5]
on the system B.

(3) Indirect-to-direct band gap tran-
sition of Ge induced by tensile strain
[6]
Tensile strain is reported to induce an indirect-
to-direct band gap transition of Ge where
the conduction-band bottom shifts from the L
point to the Γ point. This transition producing
the direct gap enhances photoabsorption inten-
sity in a lower energy region, and this strained
Ge becomes a good candidate for solar-cell
materials. According to first-principles cal-
culations, uniaxial tensility in the [111] direc-
tion induces the transition at 4.2% strain [7],
and biaxial tensility in the (001) plane does
at 2.0% strain [8]. In [8], they evaluated the
decreasing rate of the Land Γ-point energies
with small strain coefficient for uniaxial and
biaxial tensility with various orientations, pre-
dicted that biaxial tensility in the (001) plane
induces the transition at the smallest strain,
and estimated the critical strain as 2.0% for
this strain type. These two studies take no
account of internal strain. We employed a hy-
brid density-functional method (HSE06) where

exchange terms due to the Hartree-Fock ap-
proximation are incorporated into those in the
local localdensity approximation (LDA) and
which remarkably improves underestimation of
the band gap in the LDA. Taking the internal
strain into consideration, we analyzed the tran-
sition for uniaxial and biaxial tensility with
various orientations. According to our evalu-
ation for room temperature, uniaxial tensility
in the [001] and [111] directions gives rise to
the transition at 4.2% and 3.7% strain, respec-
tively. Biaxial tensility in the (001) and (110)
planes causes the transition at 1.5% and 2.3%
strain, respectively. No transition occurs for
uniaxial tensility in the [110] direction and bi-
axial tensility in the (111) plane. Correspond-
ing to [8], biaxial tensility in the (001) plane
induces the transition at the smallest strain,
though our critical strain coefficient is some-
what smaller that that in [8]. To carry out
the above calculation, we used the program
package ’Vienna Ab initio Simulation Package’
(VASP) [9,10] on the system B.
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Phonon Effects and Frustration in Quantum Spin

Systems

Chitoshi YASUDA

Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus,

Nishihara, Okinawa 903-0213, Japan

In frustrated quantum spin systems with

competing interactions (frustration systems),

novel spin states are often formed due to the

strong quantum effects and have attracted con-

siderable attention. In this project, we derived

effective Hamiltonians of coupled systems of

spins and phonons (phonon systems) by per-

forming a unitary transformation [1]. Since

the effective Hamiltonians describe the frus-

trated quantum spin systems, we can inves-

tigate relations between the phonon and frus-

tration systems. For one-dimensional quantum

Heisenberg-like models with a spin-phonon in-

teraction, we consider a next-nearest-neighbor

spin interaction in addition to a nearest-

neighbor interaction and a spin-phonon inter-

action with a parameter to control a change

of a geometric structure. In order to per-

form a unitary transformation for phonon sys-

tems, we use the computational software pro-

gram ‘Mathematica’ and also check the re-

sults by hand calculation whenever it is pos-

sible. The effective Hamiltonian we obtained

is expanded by the strength of the spin inter-

action J and that of the spin-phonon inter-

action g and can be theoretically derived for

all order of the series expansion. If the or-

der becomes large, the source memory we need

becomes large. In the present work, we de-

rived the effective Hamiltonian of fourth or-

der in g and investigate the properties. The

Hamiltonian consists of spin interactions up to

fifth-nearest-neighbor and four-body interac-

tions. The eigen values of the effective Hamil-

tonian are calculated by the exact diagonal-

ization in the
∑

i S
z
i = 0 and k = π sub-

space and the Berezinskii-Kosterlitz-Thouless-

type phase transition points are evaluated by

level-spectroscopy analysis. The agreement

between results of system-size N = 12 and

16 suggests that the size dependence is neg-

ligible. Furthermore, the results for small J

agree with phase transition points estimated

by using J2/J1 = α, where J1 and J2 are

the strengths of the nearest- and next-nearest-

neighbor interactions of the effective Hamil-

tonian and αc is the phase transition point

of the J1-J2 model. Thus, this phase transi-

tion is driven between the spin-liquid and spin-

gapped phases. We can control the ground

state for g = 0 by changing the strength of the

next-nearest-neighbor spin interaction. In the

system where the ground state is in the spin-

liquid phase for g = 0, the spin-phonon inter-

action causes the usual phase transition to the

spin-gapped phase. In the system where the

ground state is in the spin-gapped phase for

g = 0, on the other hand, the spin-phonon in-

teraction causes the novel phase transition to

the spin-liquid phase for some geometric struc-

tures. This work is done in collaboration with

Satoru Akiyama (Wakayama National College

of Technology).
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Characterization of thermal transport  
at nanostructure interface 

 
Junichiro SHIOMI 

Department of Mechanical Engineering, 
The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 

 
Since interfacial thermal transport 

determines heat exchange, dissipation, 
thermoelectric efficiency and so on, it is a key 
property for the development of thermal 
management. Recently the non-equilibrium 
Green’s function (NEGF) method with non-
empirical force fields[1] has been applied to the 
silicon-germanium solid-solid interface, and 
microscopic and quantitative calculations of 
interfacial phonon transport were reported[2]. 
Although NEGF tells us the mode-dependent 
interfacial phonon transport, it cannot cover the 
effect of inelastic scattering process on thermal 
boundary conductance (GTBC) since it is based 
on harmonic theory. For the comprehensive 
understanding and quantitative evaluation of 
the interfacial thermal transport in terms of 
phonons, the contribution of the inelastic 
scattering process to GTBC needs be 
investigated.  

In this work, considering the lead-telluride 
and lead-sulfide (PbTe-PbS) system exhibiting 
high thermoelectric efficiency, we calculated 
the phonon transmission function[3] by means 
of equilibrium molecular dynamics (EMD) 
simulation with a non-empirical force field[4].  

Figure 1 shows the frequency dependence of 
the calculated phonon transmission function, 
Θ(ω), at the PbTe-PbS interface and 300 K. 
Contributions of phonons below the cutoff 
frequency of PbTe (ω=3.45 THz) to GTBC are 
dominant, whereas it can be seen that phonons 
(ω>3.45 THz) also contribute to GTBC. Note 
that the latter contribution is caused by inelastic 
scattering at the interface and is not included in 
the NEGF calculation.  
GTBC can be calculated by simply 

integrating Θ(ω) over frequency space. The 
calculated GTBC is 0.34 GWm-2K-1, which is in 
excellent agreement with the result of non-
equilibrium MD simulation that we also 

performed (0.33 GWm-2K-1). As shown in 
Fig.1, the inelastic contribution to GTBC is 
around 10% and is not negligible.  

To summarize, we calculated the phonon 
transmission function at PbTe-PbS solid-solid 
interface by performing EMD simulations. 
Phonons with a frequency above the cutoff 
frequency of PbTe transport across the interface 
and contribute to the GTBC through inelastic 
scattering at the interface. We found that the 
inelastic contribution to GTBC is around 10%, 
and thus cannot be neglected in the calculation 
of GTBC.  

 
Fig. 1 Frequency dependence of phonon 
transmission function, Θ(ω), at PbTe-PbS 
interface at 300 K. Vertical lines denote the 
maximum frequencies of PbTe and PbS crystals 
(3.45 and 7.06 THz), respectively. The solid 
line is the cumulative of kBΘ(ω).  
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Numerical analysis of field theory with non-trivial

topological structure

Michikazu Kobayashi

Department of Physics and Astronomy, Graduate School of Science, Kyoto University

Oiwakecho, Sakyo-ku, Kyoto 606-8502

As a non-trivial topological structure, I have

picked up the “knotted structure” of the field

theory in the project. Knotted structures

broadly appear in physics such as fluid me-

chanics, superfluid helium, Bose-Einstein con-

densates, non-equilibrium systems, soft mat-

ter, quantum chromodynamics, and so on.

One of the most famous field theory for knot is

the Hopf map π3(S
2) ≃ Z which is the continu-

ous map from S2 to S3 spaces. Because S3 can

be expressed as the fiber bundle S3 ≃ S2 ⋊ S1

with the base space S2 and the fiber S1, one

S2 point is mapped to a knotted or unknot-

ted loop in the S3 space under the Hopf map.

The simplest knot structure is the torus knot

characterized by the number of string twists P

along the torus and the number of strings Q,

and the relation between the Hopf charge C for

the Hopf map and the torus knot is C = PQ.

The well known classical field model giving

stable structure with C ≥ 1 is the Faddeev-

Skyrme model:

LFS =
1

2
∂µn · ∂µn− κFµνFµν ,

n · n = 1, Fµν = n · (∂µn× ∂νn).
(1)

The stable structure in the Faddeev-Skyrme

model, however, cannot be classified as the

torus knot because the structure is determined

only for C. In particular, the stable struc-

ture is trivial unknotted one for 1 ≤ C ≤ 6,

and non-trivial knotted structure appears for

C ≥ 7 in the Faddeev Skyrme model. In

this work, I have explicitly constructed stable

structure classified (P,Q) rather than C [1].

Here I have considered the following extended

Faddeev-Skyrme model:

LTN = LFS −m2(1− n23) + β2n1

m≫ β > 0.
(2)

The second and third terms in the right-hand-

side make n3 = ±1 and n1 = 1 states favorable

respectively. Under these terms, I expect the

toroidal shape of the domain wall interpolating

n3 = ±1 states, and n1 = −1 appears as a

soliton string winding on the toroidal domain

wall. As a consequence, I can obtain the torus

knot of the n1 = −1 state.

I numerically obtain the stable structure

for the LTN in the 3-dimensional semi infi-

nite space. For the time, the steepest descent

method is used for finding the stable state.

The condition n · n = 1 is satisfied by intro-

ducing the Lagrange multiplier. For the space,

to approximately treat the infinite space, I use

the following scaling transformation:

xa = L tan−1Xa, a = 1, 2, 3,

(x1, x2, x3) = (x, y, z),
(3)
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for −1 < Xa < 1, and consider the dependence

of ni onXa instead of xa, where L is the scaling

parameter. I use the cubic with the (N + 1)3

grid points with N = 1024. On the l-th point

in the xa-direction, the value of ni({(l)a}) is

defined as

ni({(l)a}) = ni({(cos(lπ/N))a}), (4)

where ni({Xa}) is the value of ni at {Xa} =

(X1, X2, X3). For l = 0 or N , which corre-

sponds to infinity, the value of ni is fixed to

the ground state:

n1 = n2 = 0, n3 = 1. (5)

To calculate the spatial derivative of ni, I use

the spectral collocation method. Under the

discrete forward cosine transformation of ni, I

obtain the coefficients for the Chebyshev spec-

trum, and can easily calculate the first and sec-

ond spatial derivatives of ni through the for-

ward and backward cosine transformations..

For the actual numerical procedure, I paral-

lelize the task along the one direction to 128

core with 32 nodes through the standard MPI

parallelization in the system B. The discrete

cosine transformation for the Chebyshev spec-

trum is done with the FFT routine included

provided by the Intel Math Kernel Library.

Figure 1 shows different stable solution of

Eq. (2) for C ≤ 6: (P,Q) = (1, 1), (2, 1), (3, 1),

(4, 1), (5, 1), (6, 1), (1, 2), (3, 2), (1, 3), (1, 4),

(1, 5), and (1, 6). Although there is no sta-

ble solution for (P,Q) = (2, 2) or (2, 3), I find

configurations with different sets of (P,Q) for

torus knots are topologically distinct even then

they have the same Hopf charge C being differ-

ent from the original Faddeev-Skyrme model.

Especially, the state with (P,Q) = (3, 2) is

non-trivial trefoil knot showing that knotted

state appears even for C = 6.

図 1: Toroidal domain wall (transparent green

surface) and soliton string for n1 = −1 (blue

string). I fix β2/m2 = 0.01, and κm2 = 1 ×
10−6.

参考文献

[1] M. Kobayashi and M. Nitta, Phys. Lett.

B 728 (2014) 314.

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

232



Numerical Study of One Dimensional Frustrated

Quantum Spin Systems

Kazuo HIDA

Division of Material Science, Graduate School of Science and Engineering

Saitama, Saitama 338-8570

1 Anisotropic Mixed Dia-

mond Chains with Spins 1

and 1/2

Effects of single-site and exchange anisotropies

on the ground state of the mixed diamond

chain with spins 1 and 1/2 are investigated.

The Hamiltonian is given by

H =

L∑
l=1

[
J(Sl + Sl+1) · (τ

(1)
l + τ

(2)
l ) +DSz2

l

+ λ
{
∆τ

z(1)
l τ

z(2)
l + τ

(1)x
l τ

(2)x
l + τ

(1)y
l τ

(2)y
l

}]
(1)

where Sl is the spin-1 operator, and τ
(1)
l and

τ
(2)
l are the spin-1/2 operators in the lth unit

cell. The total number of unit cells is denoted

by L. As in the case of λ = 1[1, 2], this model

can be treated exactly by virtue of a series of

conservation laws: ∀l, [T 2
l ,H] = 0, where T l ≡

τ
(1)
l + τ

(2)
l . Therefore, each eigenstate has a

definite set of {Tl}.
The ground state consists of an array of clus-

ters called cluster-n each containing n succes-

sive bonds with Tl = 1 separated by singlet

dimers with Tl = 0. We call this state DCn

(dimer-cluster-n) state. A cluster-n is equiva-

lent to a spin-1 chain with length 2n + 1 and

alternating single-site anisotropy.

For 1 ≤ n < ∞, DCn phase has n + 1-fold

spontaneous translational symmetry break-

down. The ground state is nonmagnetic or

paramagnetic depending on the magnitude of

two types of anisotropies[3].
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Figure 1: Ground-state phase diagram of the

Hamiltonian (1) with (a) D = 0, (b) D = 4J ,

and (c) D = −2J .

For n → ∞, the translational symme-

try is recovered. The DC∞ phase is real-

ized for small λ. Actually, this phase con-

sists of four different phases; Néel, period-

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

233



doubled Néel(PDN), Haldane, and large-

D(LD) phases. The ground state energy of the

DCn phase is calculated by numerical exact di-

agonalization (NED) of a cluster-n. For the

DC∞ phase, the ground state energy is calcu-

lated by the infinite size DMRG method. The

phase boundaries shown in Fig. 1 are deter-

mined by comparing the ground state energy

of each phase.

2 Antiferromagnetic Heisen-

berg Chains with Uniform

and Alternating Single-site

Anisotropies

The ground-state phase diagram of S = 2

antiferromagnetic Heisenberg chains with co-

existing uniform and alternating single-site

anisotropies described by the Hamiltonian

H =

N∑
l=1

JSlSl+1 + (D0 + δD)

N/2∑
l=1

Sz2
2l−1

+ (D0 − δD)

N/2∑
l=1

Sz2
2l , (2)

is investigated[4]. Here Si is the S = 2 spin op-

erator on the i-th site. We consider the antifer-

romagnetic case J > 0. The case ofD0 = 0 has

been investigated in [5]. We also take δD > 0

without the loss of generality. We investigate

this model using NED and DMRG methods.

As shown in Fig. 2, we find the Haldane,

LD, Néel, PDN, gapless spin fluid (SF), quan-

tized ferrimagnetic(QF), and partial ferrimag-

netic I and II (PFI and PFII) phases. In con-

trast to the case of S = 1[3], the Haldane

phase is limited to the close neighborhood of

the isotropic point. Within the numerical ac-

curacy, the transition from the SF phase to the

PDN phase is a direct transition. Neverthe-

less, the presence of a narrow spin-gap phase

between these two phases is suggested on the

basis of the low-energy effective theory. The

ferrimagnetic ground state is present in a wide

parameter range.
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Figure 2: Ground-state phase diagram of the

Hamiltonian (2). Open symbols are deter-

mined by extrapolation from the NED data for

4 ≤ N ≤ 12. Filled symbols are determined

from DMRG data with N = 60. (a) Overall

phase diagram. (b) Enlarged phase diagram

around (D0, δD) ∼ (0, 0).
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Conformations of polymer chains in nematic liquid

crystals

Takayuki UCHIDA and Takeaki ARAKI
Department of Physics, Kyoto University

Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502

The conformation of polymer chains dis-
solved in a simple solvent has been studied
intensively. With changing the solvent qual-
ity, or χ parameter, a coil-globule transition
is induced [1]. It is also interesting to study
the conformation of polymers in an anisotropic
liquid. It was reported that the conformation
of polymers can be anisotropic in a nematic
liquid crystal in experiments [2,3]. A mean-
field theory on the conformation of semiflex-
ible polymers in the vicinity of the nematic-
isotropic (NI) phase transition point is also
proposed [4]. Nevertheless, it is poorly under-
stood what microscopic conformation is pre-
ferred in nematic liquid crystals. In this work,
we studied the conformation of a polymer
chain in a nematogenic liquid by means of
Monte Carlo simulations. We adopt a spring-
beads model to describe a polymer chain
(Kremer-Grest and Weeks-Chandler-Andersen
potentials) [5] and Gay-Berne potential for
monomer-mesogen and mesogen-mesogen in-
teractions [6]. The rigidity of the semi-flexible
polymer is contolled with changing the bend-
ing modulus for angles between neighbour
bonds. We employ NVT ensemble and control
the temperature in order to change the phases
of the background liquid.

If the chain is flexible, the conformation
becomes anisotropic in nematic environment
(see Fig. 1). However, the chain is not com-
pletely stretched there. If the polymer chain
is semiflexible, on the other hand, the globule-
stretched transition of the chain is observed
in vicinity of the NI transition temperature.
As the rigidity of polymer is enlarged, the
globule-stretched transition point is increased
far above the NI transition temperature. Here

the solvent remains isotropic and the pretran-
sitional nematic layer is formed around the
stretched chain.

(a) (b)

Figure 1: Snapshots of the polymer chain (a)
far above and (b) in the vicinity of the NI tran-
sition temperature. The white chain represents
the polymer. The ellipsoids are the nemato-
genic molecules and their brightness represent
the local nematic order.

References

[1] P. G. de Gennes, Scaling Concepts in
Polymer Physics, (Cornel Univ. Press.,
New York, 1979).

[2] J. F. D’Allest et al., Phys. Rev. Lett. 61,
2562 (1988).

[3] Z. Dogic et al., Phys. Rev. Lett. 92,
125503 (2004).

[4] A. Matsuyama, Phys. Rev. E 67, 042701
(2003).

[5] K. Kremer and G. S. Grest, J. Chem.
Phys. 92, 5057 (1990).

[6] J. G. Gay and B. J. Berne, J. Chem. Phys.
74, 3316 (1981).

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

236



Collective Dynamics of Active Particles

Takaaki KAWAGUCHI
Department of Physics, School of Medicine, Toho University

5-21-16 Omorinishi, Ota-ku, Tokyo 143-8540, Japan

We investigate the directed motion of a one-
dimensional particle array on a symmetric pe-
riodic potential by introducing spatiotempo-
rally periodic modulation of the natural length
between particles. Under certain conditions
the particle array moves unidirectionally with
finite velocity and shows directed motion for
any finite value of the potential amplitude.
Novel collective dynamics of the directed mo-
tion are observed.

The model considered here is an ex-
tended version of the one-dimensional Frenkel-
Kontorova model, which consists of an array of
particles interacting with each other via a lin-
ear spring on a periodic substrate. No directed
external force works on the particles and no
spatial asymmetry exists. We introduce spa-
tiotemporally periodic modulation of the nat-
ural length between adjacent particles. The
natural length between i-th and (i+1)-th par-
ticles is given by ci,i+1. We assume sinusoidal
modulation with an amplitude α, a time period
T and a wave length λ.

The equation of motion of the i-th particle
in the array is given by

üi + γu̇i =ui+1 − 2ui + ui−1 − ci,i+1 + ci−1,i

− U sin (2πui/cb) ,

where ui is the one-dimensional coordinate of
the i−th particle. The equations of motion are
solved under the periodic boundary condition
by assuming overdamped motion of particles.

Figure 1 shows the time-evolution of the
coordinates of the particles ui(t) for a cer-
tain condition. There appears spatiotempo-
rally correlated motion of the particles. Each
particle repeats oscillatory motion with differ-
ent phases and as a whole moves forward. The
motion resembles that of measuring worms,
that is, the system repeats extension and con-

traction of its body part by part and moves
forward as a whole.
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Figure 1: Time evolution of the coordinate of
each particle.

The directed motion shows interesting be-
haviors against the change in the parameters
of the modulation. In fig. 2 we show a rever-
sal phenomenon of the direction, i.e., current
reversal, against the change in the modulation
amplitude α. The velocity v is normalized with
v0 = cb/T . For 0.05 < α/c0 ≤ 0.46 the parti-
cle array moves in the positive direction with
v/v0 = 1. As α/c0 is increased, reversal of mo-
tion appears twice. The first reversal occurs at
α/c0 ≈ 0.47 from v/v0 = 1 to v/v0 = −2, and
the second one does at α/c0 ≈ 0.71 and the
value of v/v0 returns to the same with that
for α/c0 ≤ 0.46. This may be called the dy-
namical reentrance of the directed motion. It
is characteristic of the directed motion in this
system that the strengthening of the modula-
tion amplitude does not increase velocity, but
causes the reversal of motion.

We investigate the changes of the system
against increasing U for a suitable constant
value of T . Figure 3 shows a diagram of the dy-
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Figure 2: Modulation amplitude dependence
of the normalized velocity of the particle array.

namical states for T = 40 in the v/v0−U plane
where the normalized velocity v/v0 is plotted
against U for α/c0 = 0.5 and λ/L = 0.25.
The absolute magnitude of v/v0 vanishes at
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Figure 3: Diagram of dynamical states plotted
in the v/v0 − U plane.

U = 0, i.e., no barrier cause no directed mo-
tion, and increases with U . The substrate po-
tential yields barrier and frictional force for
each particle. The directed motion observed in
the present model is, hence, a sort of barrier-
assisted and friction-induced motion. The ve-
locity is locked to v/v0 = −2 when U is larger
than Uc0 ≃ 0.14, where Uc0 is the critical
strength of U for the occurrence of the veloc-
ity locking. For 0 < U < Uc0 the motion of
the system is out of the range of the adiabatic
motion. In this regime, hence, the motion is
nonadiabatic and the velocity is not locked.

There exist another two critical strengths of
U between the adiabatic and quasi-adiabatic
regimes, which are denoted by Uc1 and Uc2.
In the range Uc0 < U < Uc1 the motion be-
comes adiabatic and the velocity locking at

certain value appears. In Uc1 < U < Uc2 the
new state appears as a quasi-adiabatic state.
The velocity locking still occurs, that is “quasi-
adiabatic locking”, but the locked value is dif-
ferent from that for Uc0 < U < Uc1. When
we increase T , the transition from a quasi-
adiabatic state with v/v0 = 1 to an adiabatic
one with v/v0 = −2 occurs at a critical value
of T in Uc1 < U < Uc2. For U ≥ Uc2 an adi-
abatic state with v/v0 = −2 appears. In the
adiabatic regime the velocity locking is stable
for T → ∞.

We investigated novel dynamical phenom-
ena of directed motion in a particle array on
a periodic substrate potential with no spa-
tial asymmetry and no direct external driving
force. The directional motion appears by in-
troducing the spatiotemporally periodic mod-
ulation of the natural length between parti-
cles. The magnitude of the velocity is locked
to multiple values of a unit velocity. The veloc-
ity locking behavior appears for adiabatic mo-
tion, and furthermore there appears a quasi-
adiabatic locking behavior in a nonadiabatic
regime.
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Hydrodynamic effect on phase ordering 

 

Ryotaro Shimizu, Hajime Tanaka 

Institute of Industrial Science, University of Tokyo 

                                          Komaba 4-6-1, Meguro-ku, Tokyo, Japan 

 

After shaking a salad dressing, we can see 

the collisions of oil droplets in vinegar. This 

coarse graining process is known as phase 

separation. In past decades researchers the 

kinetic process of phase separation phenome-

na have been intensively studied from both 

scientific and applications viewpoints, since 

this process is one of the most fundamental 

physical process of pattern formation[1].  

For a binary liquid mixture, the relevant 

domain coarsening mechanism depends sole-

ly on the volume fraction of the minority 

phase. (1) For a small volume fraction, the 

evaporation-condensation mechanism is re-

sponsible for droplet coarsening. (2) Near a 

symmetric composition, the tube hydrody-

namic instability proposed by Siggia[2] leads 

to rapid hydrodynamic coarsening. (3) For 

intermediate volume fraction, it has been be-

lieved that the Brownian-coagulation mecha-

nism is responsible for the domain coarsen-

ing [2]. In this mechanism droplets grow by 

accidental collisions between droplets under-

going random Brownian motion. 

Some time ago, we found in our micros-

copy observation of a droplet coarsening pro-

cess that droplets are moving deterministical-

ly) rather than randomly [3,4]. Following 

trajectories of droplets, we noticed that drop-

lets sometimes move directionally with a 

speed much faster than the expectation from 

random Brownian motion. We suggested that 

this may be due to a non-trivial coupling be-

tween composition and velocity fields. Drop-

lets move around by thermal fluctuations 

while exchanging solutes with neighboring 

droplets via the surrounding matrix phase. 

The composition correlation between a pair 

of neighboring droplets should develop be-

fore an accidental collision between them by 

Brownian motion takes place. We speculated 

that this composition correlation may be an 

origin of rather deterministic motions of 

droplets. 

This time we studied how this complex 

coupling leads to deterministic motions of 

droplets and efficient droplet coarsening, by 

numerically solving a fluid model (known as 

model H) for phase separation with and with-

out thermal composition and force noises.  

Figure 1 shows the snapshot of a binary 

fluid mixture undergoing droplet spinodal 

decomposition, which is simulated with 

thermal fluctuations. The interface of drop-

lets is rough due to thermal fluctuation ef-

fects. We note that, to the best of our 

knowledge, this is the first example of model 

H simulation in three dimensions including 

full thermal noises. In the early stage, many 

small droplets are formed by fragmentations. 

We observed the growth of droplets by colli-

sions with neighboring droplets in the late 

stage. We analysed the time evolution of av-

erage droplet size during the coarsening pro-

cess. As the result, we found that the coarsen-

ing proceeds faster than the prediction by 

Brownian-coagulation (BC) theory, even 

though the coarsening exponent was close to 

1/3, which is consistent with the BC theory.  

To seek a cause of the faster coarsening 

mechanism, we analysed the displacements 

of droplets during the interval of two 

successive collisions. We found that the 

droplets move directionally towards a neigh-

boring droplet. We consider that it is this fast 

directional motion that leads to the fast 
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coarsening process.  

From the result of coarsening process 

without thermal noises, we can study about 

the composition correlation between droplets 

during the phase separation process, without 

suffering from noises that smear out all the 

details. We found that the interfacial profile 

of each droplet is not spherical symmetric but 

rather anisotropic, reflecting configuration of 

the neighboring droplets, even though the 

shape of droplets is almost perfectly spherical 

because of the action of the Laplace pressure. 

We also found that the deterministic flow 

field is induced at each droplet, reflecting the 

asymmetric interfacial profile of each droplet.  

This asymmetric interfacial profile leads to 

the intradroplet gradient of the interfacial 

tension and this gradient generates hydrodyn-

amic motion of droplets. 

    In summary, we studied the coarsening 

process of droplet dispersions. We found that 

the coupling between diffusion and flow field 

plays a very important role for the phase 

separation process of asymmetric binary 

mixtures. 
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Figure 1: A snapshot during phase separation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

240



High precision computation of Feigenbaum constant.

Masanori SHIRO

HTRI, National Institute of Advanced Industrial Science and Technology

Umezono1-1-1 Central 2, Tsukuba, Ibaraki 305-8568

A purposes of our project is calculating the

second Feigenbaum constant with high preci-

sion.

Properties of critical exponents between

many type of phase transitions are not nec-

essarily revealed, although the transitions are

found in many solid-state materials. We think

that phase transitions are able to treat as

chaotic transitions. Feigenbaum constant is an

universal value between simple chaotic models

and fractals. A series expansion for the con-

stant is not known yet. It is just found in al-

most two thousands digits in Briggs’ thesis[1].

The most important signification of our

project is to find a precise value of Feigenbaum

constant for the phase-transition studies. In

future, the value should be expanded in a se-

ries. Many digits provide more correct infor-

mation whether the values is rational or not,

transcendental or not, and so on.

Our project stated at the second half season

in 2013. An universal function g(x) which is

required for calculation of the constant, has

following properties,

1. g(x) is an even function.

2. g(αx)/α = g(g(x))

3. α = 1/g(1)

4. g(0) = 1

.

We did basis expansion of g(x) and its coef-

ficients as a vector and divided xi ∈ [0, 1] are

constructed to a matrix.

Although required libraries as Eigen are not

installed, we wrote a prototype in C++ and

checked its workings, computational effort and

required memory[2]. We found that a realistic

digits is till later thousands order in our avail-

able resources.

Fortunately, our work will run on the next

year. Required libraries such as Eigen and

Mpreal will be modified for our computers, in-

stalled by the center staff and we want to do

our task completely.
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Symmetry protection of disordered phases and phase

transitions in spin chains

Yohei FUJI, Frank POLLMANNa, and Masaki OSHIKAWA

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581
aMax-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany

In recent decades, the study of topological

phases is one of central interests in condensed

matter physics. A special class of the topo-

logical phases is called “symmetry-protected

topological (SPT)” phases [1], which are dis-

tinct only in the existence of certain symme-

tries. SPT phases are characterized by non-

trivial entanglement structures. On the other

hand, when the ground state is adiabatically

connected to a direct product of local states,

it is considered to be in a trivial phase. It

appears that there is just one trivival phase.

However, in the presence of certain symme-

tries, there can be distinct trivial phases.

In this work, we show such a symmetry-

protected distinction between trivial phases in

1D spin systems in the presence of the sym-

metry with respect to the combined opera-

tion of the site-centered inversion and the π-

rotation about one spin axis. [2] To illustrate

this, we consider the spin-1 chain with a stag-

gered magnetic field,

H =
∑
j

[
S⃗j · S⃗j+1 +Dz(S

z
j )

2 +Dx(S
x
j )

2

+hz(−1)Sz
j

]
,

which possesses the desired symmetry.

We numerically investigate its ground-state

properties by the infinite density-matrix renor-

malization group (iDMRG) method [3], which

provides an accurate variational ground-state

wavefunction in the matrix-product represen-

tation with χ× χ matrices. We use Fortran90

on the ISSP Supercomputer with OpenMP
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Figure 1: Correlation lengths are plotted

against Dz.

parallelization in order to accelerate the con-

tractions of tensors. In Fig. , we show the

correlation length as a function of Dz for two

sets of the parameters. Divergent behaviors of

the correlation lengths as increasing χ corre-

spond to phase transitions. These phase tran-

sitions indicate that two trivial phases are dis-

tinguished under the above symmetry.
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Fixed Scale Factor Finite-Size Scaling Analysis for

Two-Dimensional Spin Systems

Yusuke TOMITA
Shibaura Institute of Technology

307 Fukasaku, Minuma-ku, Saitama-City, Saitama 337-8570

Critical phenomena in continuous spin sys-
tems on two-dimensional (2D) lattices have
long been fertile soils for deep understand-
ing of statistical physics. In particular, the
Mermin-Wagner-Hohenberg theorem and the
theory of the Berezinskii-Kosterlitz-Thouless
(BKT) transition play roles of principal guides
for investigating critical phenomena in 2D sys-
tems. Though the preceding studies are quite
helpful to judge whether a system shows crit-
ical phenomena or not, a little number of sys-
tems yet annoy researchers by showing obscure
critical behaviors. The obscureness hinders
grasp of physics, and sometimes it may lead us
to a misunderstanding of critical phenomena.
A suitable example of such an obscureness is
the 2D ferromagnetic Heisenberg model. The
Heisenberg model exhibits exponentially large
correlation lengths at low temperatures, and
conventional finite-size scaling (FSS) analyses
often lead to an erroneous conclusion that the
model has the BKT phase.

To improve accuracy of FSS analyses, I
proposed a FSS analysis using a fixed scale
factor[1]. A procedure of the FSS analysis is
like as follows: (1) Calculate two two-point cor-
relation functions, G(β, L/2) and G(β, L/4).
The Correlation ratio C(β, L) is defined by
G(β, L/2)/G(β, L/4). (2) Calculate the ra-
tio of the correlation ratio FC(ξ(β, L)/L) =
C(β, sL)/C(β, L). Here, s is a parameter
named the fixed scale factor. Since the cor-
relation ratio is a dimensionless quantity, the
function FC is equal to unity at the critical
point. With usual procedure, a location of a
critical point is estimated by a crossing point
of a dimensionless FSS function, but the esti-
mation of the crossing point is usually difficult

Figure 1: (a) An FSF-FSS plot of the correla-
tion ratio for the 2D Heisenberg model. (b) A
semi-logarithmic plot of an FSF-FSS function
for the 2D Heisenberg model.

task for systems under discussion. The con-
ciseness in estimating a critical point (FC = 1)
is a main advantage of the new FSS analy-
sis. Even though the improved FSS analy-
sis gives the concise measure, we need a fur-
ther improvement to estimate criticalities of
systems whose correlation lengths are expo-
nentially large. The improvement is accom-
plished by introducing the form of the two-
point correlation function in the critical region,
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G(β, r) ∼ e−κr/rd−2+η. The parameter κ is
proportional to the inverse of the correlation
length; that is G(β, r) gives the power law de-
caying correlation function at the critical point
(κ = 0). Using the expression, the distance
from unity [UC(= 1−FC)] is approximately es-
timated as (s− 1)κL/4 in the critical region.

Figure 1 shows the FSS function FC and the
logarithm of the distance from unity for the 2D
Heisenberg model. Since the correlation length
of the model exponentially develops as lower-
ing temperature, FC is almost unity at low tem-
peratures. However, the logarithmic plot of
the function UC manifestly shows the distance
is finite at finite temperatures. Therefore, the
correlation length of the 2D Heisenberg model
never diverges at finite temperature.

I also applied the FSS analysis to the 2D
XY and RP2 models, and the results proved
the analysis is quite helpful to judge whether
a system exhibits a phase transition or not.
The method can be applied to other systems
straightforwardly. The applications will give
firm evidences of existence or absence of the
systems’ criticalities.

References

[1] Y. Tomita, in preparation.

Activity Report 2013 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

244



Large scale hard sphere molecular dynamics

simulation in the nonequilibrium transport

phenomena

Masaharu ISOBE

Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya, 466-8555

In this project, we investigated several non-

equilibrium phenomena in the simple model

system by using event-driven molecular dy-

namics (EDMD) algorithm in hard core sys-

tem [1] and other alternative methods.

(i) Cluster Impact and Shock Wave Propaga-

tion in Freely Evolving Granular Gas: Granu-

lar gas without any external force evolves from

the initial homogeneous state to the inhomo-

geneous clustering state, at which the energy

decay deviate from Haff’s law. The asymp-

totic behavior of energy decay after the clus-

tering regime have been predicted by two the-

ories, which are based on mode coupling the-

ory or extension of inelastic hard rods gas. In

our study, we investigated this system espe-

cially in the clustering regime of freely evolv-

ing granular gas by a large-scale molecular dy-

namics simulation up to 16.7 million particles.

We found novel regime regarding on collisions

between“clusters” appearing after clustering

regime spontaneously, which can be clearly

identified more than a few million particles

system. The volumetric dilatation patterns

of semicircular shape originated from density

shock propagation characterize the “cluster

impact” during the aggregation process of clus-

ters. The theories don’t agree with our numer-

ical results because of cluster collision. Our

novel findings indicate that the freely cooling

granular gas in quasi-elastic and thermody-

namic limit is strongly related to Navier-Stokes

incompressible turbulence (shearing regime),

however, it eventually behaves as a compress-

ible fluid (shock wave) after clustering regime

(cluster collision regime) [2].

(ii) Hard Disks Equation of State: First-

Order Liquid-Hexatic Transition in Two Di-

mensions with Three Different Simulation

Methods [3]: Large-scale molecular simula-

tions of the two dimensional hard disk sys-

tem around the melting point are investigated

with three different methods (i.e., event-chain

Monte Carlo, a massively parallel Monte Carlo

and EDMD). We reproduce the equation of

state up to one million particles system. The

relative performance of these methods is an-

alyzed and the first-order melting transition

in hard disks is confirmed, which were previ-

ously obtained using event-chain Monte Carlo

method. Furthermore, the analyses of posi-

tional order confirms the existence of the hex-

atic phase in the one-million hard disk system.
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Study of the effect of the short-range interaction on

critical phenomena driven by elastic interactions

Masamichi Nishino
Computational Materials Science Center, National Institute for Materials Science

Tsukuba, Ibaraki, Japan

Domain wall (interface) propagation is fre-
quently seen in growth of a new ordered state.
The structure of the interface has been stud-
ied extensively and the following scaling rela-
tion has been established: W (L, t) ∼ Lαf( t

Lz ),
where L is the system size parallel to the in-
terface, t is time, and f(x) is a scaling func-
tion. The critical exponents are established
as α = 1/2, z = 3/2 in KPZ universality
class for one-dimensional interface, i.e., in two-
dimensional systems. Various kinds of growth
models such as Ising model, BD model, RSOS
model, etc, are in this class. In the steady
state of interface growth, i.e., when t

Lz ≫ 1,
the interface width is scaled as W (L, t) ∼ Lα.

Spin crossover (SC) materials show a wide
variety of phase transitions and have attracted
much attention in applicability to devices [1].
The SC system has bistable states, i.e., low
spin (LS) state and high (HS) state and the
size of each molecule depends on the states.
The elastic interaction caused by the lattice
distortion due to difference of the molecular
sizes is important for the cooperative interac-
tion. We modeled the cooperative interaction
by constructing an elastic-interaction model,
in which the changeable volume of the molec-
ular unit is taken into consideration.

In this work we investigated domain wall
propagation between HS and LS phases and
the scaling property of the interface [2]. There
exist two kinds of interfaces in SC systems.
One is the interface of the spin states of
molecules and the other is the interface of the
lattice structure. The nature of the lattice in-
terface width does not depend on the dynam-
ics of the lattice and spin, and the shape is
of macroscopic structure due to long-range na-
ture of the elastic interaction. In contrast, the
nature of the spin interface width changes de-
pending on the dynamics of the lattice and

spin. When the change of the spin state is fast
and the lattice relaxation does not follow it suf-
ficiently, the roughness exponent has the value
α = 1/2, which is commonly found in models
of short-range interactions. In contrast, when
the lattice relaxes well, the spin dynamics is in-
fluenced by the lattice dynamics, which leads
to α = 1 of the roughness exponent. In this
case the macroscopic nature of the elastic in-
teraction affects the spin interface.

Figure 1: Snapshot of interface growth in the
SC system. Blue and red parts denote LS and
HS phases, respectively.
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Fracture dynamics and pattern formation

Satoshi YUKAWA and Shin-ichi ITO

Department of Earth and Space Science, Osaka University

Machikaneyama, Toyonaka, Osaka 560-0043

A fracture pattern of a thin layer is seen

in everyday life. It is essentially caused by

shrinkage of the paste; The fracture pattern

of the dried mud is also caused by stress in-

crement during the desiccation process of the

paste. There are lots of interesting phenomena

which have not been understood yet. Over the

last few years, we have studied the fracture

dynamics in a drying thin layer of the paste

numerically and analytically.[1] The main re-

sult of this study is that the dynamical scaling

law of the fragment size distribution is found;

The bare distribution of the fragment size S

at time t, P (S, t), can be scaled by its aver-

age, P (S, t) ∼ P̃ (S/⟨S⟩t). This result resem-

bles the Vicsek-Family scaling for the aggre-

gation process,[2] but the direction of time is

opposite.

In this year, in order to understand the dy-

namical scaling property, we study the stochas-

tic model based on the Gibrat process,[3] which

is called the modified Gibrat process. Orig-

inal Gibrat process is a discrete-time divid-

ing stochastic process with the multiplicative

noise. For the modified Gibrat process, we in-

troduce the concept of the lifetime of the frag-

ments. Thus the discrete-time stochastic pro-

cess becomes continuous-time one. The life-

time is a function of the area of the fragments,

which is analytically evaluated by equations of

motion for elastic continuum.

In the last year, we found that the modified

Gibrat process obeyed the dynamical scaling

law in the case that the lifetime is a power-

law function on the area. In this year, on the

ISSP super computers, we performed numeri-
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Figure 1: Scaled distributions for several pa-

rameters. Shapes of the final scaled distri-

butions are different, but all distributions are

scaled.

cal simulations with parameter parallelization

to survey the large parameter space. In Fig. 1,

several scaled distributions are shown. In addi-

tion, we analyzed the Markovianized stochastic

model of the modified Gibrat process. Further

theoretical and experimental investigation are

now in progress.
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Multifractality near a Point Defect at Topological

Phase Transitions

Hideaki OBUSE

Department of Applied Physics, Hokkaido University

Sapporo 060-8628, Japan

Multifractality at Anderson transitions,

which reflects non-trivial self-similar structures

of wave functions due to the absence of charac-

teristic lengths, has attracted much attentions

for its importance to understand the phase

transitions[1]. Multifractality also exposes in-

teresting natures when a topological insula-

tor with disorder undergoes a phase transi-

tion into a metal or a topological insulator

with the different topological number[2, 3]. On

one hand, multifractality in the bulk region is

determined by only symmetries and the spa-

tial dimension of the system even for topolog-

ical phase transitions. Thereby, bulk multi-

fractality observed at topological phase transi-

tion is identical with bulk multifractality of one

of the conventional Anderson transitions. On

the other hand, multifractality near (straight)

boundaries, called boundary multifractality, of

the topological phase transition depends on the

topological number of the adjacent topological

insulating phase together with symmetries and

the spatial dimension. Therefore, boundary

multifractality of the topological phase tran-

sition is different from that of the conventional

Anderson transitions. In this work, we study

multifractality near a point like topological de-

fect.

We focus on the two-dimensional square lat-

tice with random hoppings. We note that there

is no on-site disorder so that the system retains

chiral symmetry. A vacancy, in other words, a

point defect in this system is a topological de-

fect and generates a zero energy state. We have
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Figure 1: The q dependence of anomalous di-

mensions ∆q. The blue crosses and red filled

circles represent anomalous dimensions calcu-

lated from wave function amplitudes near and

far from the defect, respectively. For compari-

son, the anomalous dimension for systems with

no point defects is shown by the black open cir-

cles.

numerically calculated the wave function ψ(r)

at the zero energy of the system with the lin-

ear size L for many disorder realizations. The

system size L is changed from 40 to 1000 and

the number of disorder realizations is 106 for

each L. Then, multifractality is quantitatively

calculated from the size L dependence of the

relation, L2q|ψ(r)|2q ∝ L−∆q , where ∆q is an

anomalous dimension and the overline repre-

sents the ensemble averaging. We have calcu-

lated ∆q from the wave function amplitudes

far from and close to the point defect.
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Figure 1 shows ∆q in case the position of

wave function amplitude r is close to or far

from the point defect. We have confirmed that

∆q from wave function amplitude far from the

point defect is the same with ∆q calculated

from a system with no point defect. We have

also found that ∆q from wave function ampli-

tudes close to the point defect exhibits new

multifractality which is different from ∆q in

the bulk.
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Molecular Simulation Study of Supramolecular Structure 
Formation by Amphiphilic Molecules 

 
Susumu FUJIWARA 

Graduate School of Science and Technology, Kyoto Institute of Technology 
Matsugasaki, Sakyo-ku, Kyoto 606-8585 

 
Amphiphilic molecules such as lipids and 

surfactants are composed of hydrophilic and 

hydrophobic parts. In aqueous solutions, 

amphiphilic molecules spontaneously self-

assemble into various structures such as 

micelles, vesicles, and bicontinuous structures 

[1-3]. Although numerous computer simulation 

studies have so far been done on structure 

formation of amphiphilic molecules, each of 

which consists of a hydrophilic head group and 

a hydrophobic tail group, there have been few 

theoretical and simulation studies on structure 

formation of bolaamphiphilic molecules, each 

of which contains a hydrophobic stalk and two 

hydrophilic ends. The purpose of this study is 

to clarify the effect of hydrophilicity on the 

phase behavior of bolaamphiphilic solutions. 

With a view to investigating the phase behavior 

of bolaamphiphilic solutions at the molecular 

level, we perform the molecular dynamics 

(MD) simulations of coarse-grained 

bolaamphiphilic molecules with explicit solvent 

molecules and systematically analyze the 

formation processes of micelles and 

mesophases. 
A bolaamphiphilic molecule is modeled as a 

semiflexible chain which consists of a 

hydrophobic stalk with three particles and two 

hydrophilic ends (H1 and H2), each of which 

contains one particle. The solvent molecules are 

modeled as hydrophilic particles. As bonded 

potentials, we consider the bond-stretching 

potential and the bond-bending potential. The 

interaction between hydrophilic and 

hydrophobic particles is modeled by the 

repulsive soft core potential and all other 

interactions are modeled by the Lennard-Jones 

(LJ) potential. Note that the LJ interaction 

parameter ∗
hs2ε  between a hydrophilic end 

particle (H2) and a solvent particle can be 

varied whereas the LJ interaction parameter 
∗
hs1ε  between a hydrophilic end particle (H1) 

and a solvent particle is fixed constant. 

The numerical integrations of the equations 

of motion for all particles are carried out using 

the velocity Verlet algorithm at constant 

temperature with a time step of 0.0005. We 

apply the periodic boundary conditions and the 

number density is set at 0.75. Initially, we 

prepare homogeneous bolaamphiphilic 

solutions at high temperature ( 10=∗T ) for 

various values of the amphiphilic 
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concentrations sc  and the LJ interaction 

parameters ∗
hs2ε . The system is then quenched 

to 3.1=∗T  and MD simulations of 7100.5 ×  

time steps are performed for each simulation 

run. 

Our simulations show that various kinds of 

higher-order structures such as worm-like 

micelles, hexagonal structures and bicontinuous 

structures are obtained (Fig.1). We also 

clarified that, at low amphiphilic concentrations 

( 1.0s =c ), a plate-like micelle changes to 

worm-like micelles, and then to spherical 

micelles as the interaction parameter ∗
hs2ε  

increases. At intermediate amphiphilic 

concentrations ( 5.0s =c ), on the other hand, it 

is ascertained that the lamellar structure 

changes to the bicontinuous structure, and then 

to the worm-like or hexagonal structures as the 

interaction parameter ∗
hs2ε  increases. 
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Phase Diagramof the Spin-1/2 Heisenberg Antiferromagnets on the
Cairo-Pentagon Lattice
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Two-dimensional frustrated spin-1/2 Heisen-
berg antiferromagnet on the Cairo-pentagon
lattice1,2 is investigated by the numerical diago-
nalization method on the finite-size clusters up
to 36 sites3 with the periodic boundary condi-
tion. The lattice is constituted with the three-
coordinated A-sites and the four-coordinated B-
sites in the occupation ratio of 2 to 1. Hence the
Heisenberg-type Hamiltonian requires two-types
of nearest neighbor interactions, such asJ = JAA

andJ′ = JAB , at least.
The magnetization under the magnetic field

has been calculated. The so-called 1/3-plateau is
observed for every value ofx ≡ J/J′, with the ex-
ceptional narrow region aroundx ∼ 0.8, where the
plateau may vanish or survive with a narrow width
in the thermodynamic limit. The magnetization
jumps accompanying the change of the total spin
∆St ≥ 2 are observed at the upper-field edge of
the 1/3-plateau for 0< x < 0.8 and at the lower-
field edge of the 1/3-plateau for 0.8 < x < 2.0.
Such jump in the isotropic spin system is peculiar
and has been found in some spin frustrated sys-
tems. The mechanism is attributed to the spin flop
transition under the isotropic spin system3 and is
confirmed by the drastic change in the correlation
function as a function ofx or the total magnetiza-
tion m.

From the results of the magnetization process
and the nn correlation functions for the longitu-
dinal (z-axis) and the transverse components, the
magnetic phase diagram was derived in the plane
of x − h/J, whereh is the magnetic field applied
along thez-axis. The phase diagram is shown in
Fig.1. The phase I is the disordered state, which
emerges between the orthogonal dimer state at
x & 0 and the ferrimagnetic ordered state for
x & 2.0, under the absence of the magnetic field.
The phases II and III are the 1/3-plateau states,

which states are continued to each state atx ∼ 0
and x & 2.0, respectively. In the former phase,
the 1/3-magnetization ath = 0 is attributed to the
free 1/3 spins and in the latter phase, it is to the
resultant ferrimagnetic magnetization.
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Fig. 1The phase diagram under the magnetic field
h. Reverse triangle, circle, square, and triangle
denote the level-crossing field between the low-
est energy state within the multiplet ofSt = 0
andSt = 1 for the total spinSt, the lower-field-
edge (LFE) of the 1/3-plateau, the higher-field-
edge (HFE) of the plateau, and the full polariza-
tion field, respectively. The solid and the vacant
ones in those symbols denote data for the system
sizesN = 30 andN = 24 systems, respectively.
The phase FIF designates the field-induced ferro-
magnetic phases. The solid curves at the HFE of
the phase II and the LFE of the phase III denote
the regime ofx where the magnetization jump of
∆Sz

t = 2 emerges in the magnetization process, for
the case ofN = 24 as an example.
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