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Abstract

We developed several simulation methods from two ap-
proaches. At first, we extended the previous method
for membrane protein structure prediction to treat the
flexibility of transmembrane backbone structures, which
is often related to functions of proteins. With the
new method, we reproduced the native structure of
bacteriorhodopsin (BR) which includes distroted trans-
membrane structures. This method enables us to re-
duce the system size and computational resource. Sec-
ondly, we developed two methods in replica-exchange
method (REM). One method is the deterministic replica-
exchange method (DETREM), which introduces internal
states evolved by an ordinary differential equation which
controls replica exchange without pseudo random num-
bers. This method can resolve some problems of less
efficiency in parallel computing caused by pseudo ran-
dom numbers. The other is the designed walk replica-
exchange method (DEWREM), which determines trajec-
tory of replicas in temperature space without a random
walk. We applied these new methods and reproduced
the results of conventional REM in 2-dimensional Ising
system.

1 Introduction

Computers have been developing for decades. How-
ever, system of interest has also been larger than be-
fore. Thus, efficient algorithm for computer simulation
is always important to perform the simulation of current
interest. For the purpose, there are two fundamental
approaches: decrease of the number of molecule in sys-
tem and enhancement of sampling. A former example
is to adopt an implicit solvent model for solvent in a
biomolecule system. In good models, this method can
achieve the purpose of simulations although the implicit
model abolishes atomistic resolution of solvent molecule
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by a replacement of solvent molecule to a mean field
function. A latter example is to employ replica-exchange
method which enhances sampling of conformations. This
method typically accelerates the crossing of free energy
barriers using temperature change of replicas.

We developed new methods in each approach, and we
show the results of simulations. At first, we proposed
a membrane protein structure prediction method with
flexible treatment of transmembrane backbone structures
and the corresponding extension of the previous implicit
membrane model. Using the method, we performed the
structure prediction of bacteriorhodopsin and reproduced
the native structure. We next proposed two new replica-
exchange methods to increase efficiency of REM. One is
the method that performs replica exchange with a dif-
ferential equation without pseudo random numbers. The
other is the method that specifies the order of replica
exchange and, thus, the trajectory in temperature space
among replicas. In 2-dimensional Ising model, we com-
pared results of these new methods and their combination
to results of the conventional Metropolis replica-exchange
method.

This paper is organized as follows. In the first part,
we will introduce the methods and results of membrane
structure prediction for bacteriorhodopsin. In the second
part, we will show the methods and results of new replica-
exchange method in 2D-Ising model. Finally, we will give
summary and future prospect of this paper.

2 Methods1

We added the following four elementary harmonic con-
straints as a simple implicit membrane model to the orig-
inal potential energy function in order to mimic the re-
strained membrane environment. The constraint energy
function is given by

Econstr = Ec1 + Ec2 + Ec3 + Ec4, (1)

where each term is defined as follows:

Ec1 =
NH−1∑
i=1

k1 θ (ri,i+1 − di,i+1) [ri,i+1 − di,i+1]
2
, (2)
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,(3)

Ec3 =
∑
Cα

k3 θ (rCα − dCα) [rCα − dCα ]2 , (4)

Ec4 =
NBD∑
j=1

k4θ(| φj − φ0 | −αφj )[| φj − φ0 | −αφj ]
2

+
NBD∑
j=1

k5θ(| ψj − ψ0 | −αψj )[| ψj − ψ0 | −αψj ]2.(5)

Ec1 is the energy that constrains pairs of adjacent he-
lices along the amino-acid chain not to be apart from each
other too much (loop constraints), where ri,i+1 is the dis-
tance between the C atom of the C-terminus of the i-th
helix and the Cα atom of the N-terminus of the (i+1)-th
helix, and k1 and di,i+1 are the force constant and the
central value constant of the harmonic constraints, re-
spectively. Each di,i+1 is proportional to the loop length
connected between helices. θ(x) is the step function,
which has 1 when x is larger than or equal to 0, oth-
erwise zero. NH is the total number of transmembrane
helices in the protein.
Ec2 is the energy that constrains helix N-terminus

and C-terminus to be located near membrane boundary
planes. Here, the z-axis is defined to be the direction
perpendicular to the membrane boundary planes. k2

is the force constant of the harmonic constraints. zL
0,i

and zU
0,i are the z-coordinate values of the Cα atom of

the N-terminus or C-terminus of the i-th helix near the
fixed lower membrane boundary and the upper mem-
brane boundary, respectively. zL

0,i and zU
0,i are the fixed

lower boundary z-coordinate value and the upper bound-
ary z-coordinate value of the membrane planes, respec-
tively, and here they depend on each helix atoms due to
the known data from OPM[1] although constant mem-
brane plane region is also possible like a previous research
condition. dL and dU are the corresponding central value
constants of the harmonic constraints. This term has a
non-zero value only when the Cα atoms of the N-terminus
or C-terminus of the i-th helix are apart more than dL

i (or
dU
i ). This constraint energy was introduced so that the

helix ends are not too much apart from the membrane
boundary planes.
Ec3 is the energy that constrains all Cα atoms within

the sphere (centered at the origin) of radius dCα . rCα is
the distance of Cα atoms from the origin, and k3 and dCα

are the force constant and the central value constant of
the harmonic constraints, respectively.

Ec4 is the energy that constrains dihedral angles of
main chain within bending or kinked helix structures
from ideal helix structures preventing them from form-
ing random-coil structures. φj and ψj are the backbone
dihedral angle of the j-th residue. φ0 and ψ0 are the ref-
erence value of the harmonic constraint to keep the helix
structures without forming random coil structure, and
αφj , α

ψ
j are the ranges of the harmonic constraints. NBD

is the total number of ( φ, ψ ) angles in helix backbones.
We set k1 = 5.0, di,i+1 = (46, 53, 34, 19, 95, 30)

where i=1, 2, ..., 6, k2 = 5.0, zL
0,i =

(−14,−16,−20,−15,−19,−24,−18) where i=1, 2,
..., 7, zU

0,i = (12, 14, 15, 15, 14, 11, 12) where i=1, 2, ...,
7 , dU = dL = 2.0, k3 = 0.5, dCα = 80, k4 = 30.0,
k5 = 30.0, φ0 = −62, ψ0 = −40, αφj = 16, and αψj = 13.
Only the transmembrane helices were used in our
simulations, and loop regions of the membrane proteins
as well as lipid and water molecules were neglected.
The membrane environment for this protein for the
membrane thickness and the region of transmembrane
region of the helices was taken from Orientation of
Proteins in Membrane (OPM) [1]. The amino-acid
sequences of the helices are EWIWLALGTALMGLGT-
LYFLVKG, KFYAITTLVPAIAFTMYLSMLL, IY-
WARYADWLFTTPLLLLDLALL, QGTILALVGADG-
IMIGTGLVGAL, RFVWWAISTAAMLYILYVLFFGF,
TFKVLRNVTVVLWSAYPVVWLIGSE, and LNI-
ETLLFMVLDVSAKVGFGLILL. The N-terminus and
the C-terminus of each helix were blocked with the acetyl
group and the N-methyl group, respectively. The initial
structure for each helix was an ideal helix structure and
they were placed in the membrane region randomly. We
then perform REM simulations of these transmembrane
helices. The MC program is based on CHARMM macro-
molecular mechanics program[2, 3], and replica-exchange
Monte Carlo method was implemented in it.

Replica-exchange method is explained in next Meth-
ods2 section. We here give the simulation conditions
of REM. We used 40 replicas and the following tem-
peratures: 400, 415, 435, 455, 485, 518, 552, 589, 629,
671, 716, 764, 815, 870, 928, 990, 1056, 1127, 1202,
1283, 1369, 1460, 1558, 1662, 1774, 1892, 2019, 2154,
2298, 2452, 2616, 2791, 2978, 3177, 3390, 3616, 3808,
4050, 4250, and 4500 K. We used rather high tempera-
ture values compared to experimental conditions. This
is because our implicit membrane model guarantees the
helix stability and enhances conformational sampling.
Replica exchange was attempted at every 50 MC steps.
We performed four independent simulations in total of
1,055,950,000 MC steps.

We used the CHARMM19 parameter set (polar hydro-
gen model) for the potential energy of the system[4, 5].
No cutoff was introduced to the non-bonded terms. Each
helix structure was first minimized subjected to harmonic
restraint on all the heavy atoms. In order to prepare
random initial conformations, we first performed regular
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constant MC simulations of all the replicas for 3,000,000
MC steps. We then performed equilibrium MC simu-
lation for 3,000,000 MC steps at the above 40 temper-
atures, and the last conformation for each replica was
the initial structure for the REM simulations. We re-
peated this process four times for four independent REM
simulations. In those simulations, dielectric constant
was set to ε = 1.0 as in the previous works[6–10]. In
MC move, we updated conformations with a rigid trans-
lation and rotation of each α-helix, a rotation of tor-
sion angles of backbones by directional manipulation and
concerted rotation[11–13], and torsion rotations of side-
chains. There are 2NH + NSD +NBD +NCR kinds of MC
moves, where NSD is the total number of dihedral angles
in the side-chains of NH helices and NCR is the total
number of the combination of seven successive backbone
torsion angles by the concerted rotation in the helix back-
bone. One MC step in this article is defined to be an up-
date of one of these degrees of freedom, which is accepted
or rejected according to the Metropolis criterion.

We analyzed the simulation data by the principal
component analysis[14–19]. At first, 42,238 conforma-
tional data were chosen at each temperature from the
REM simulations. The structures were chosen from the
trajectories at a fixed interval of 25,000 steps. The
structures were superimposed on an arbitrary reference
structure, for example, the native structures of PDB
code:1PY6. Images were rendered by VMD[20]. The
variance-covariance matrix is defined by

Cij =< (qi− < qi >)(qj− < qj >) >, (6)

where ~q = (q1, q2, q3, · · · , q3n−1, q3n) =
(x1, y1, z1, · · · , xn, yn, zn) and < ~q >=

∑n
k=1 ~q(k)/n.

xi, yi, zi are Cartesian coordinates of the i-th atom, and
n is the total number of atoms.

This calculation was performed by R program
package[21], and the clustering was performed by k-
means clustering method[22]. The first superposition was
done to remove large eigenvalues from the translations
and rotations of the system because we want to analyze
the internal differences of structures. The eigenvalues
were ordered in the decreasing order of magnitude.

3 Results1

We first identified the free energy minimum state in our
simulations classified by principal component analysis.
Fig. 1 shows the representative structure in each cluster
from the highest density region. The root-mean-square-
deviation (RMSD) value of each representative structure
with respect to the Cα atoms was 3.6 Å, 8.8 Å, 15.8
Å, 15.9 Å, and 16.6 Å for Cluster 1, Cluster 2, Clus-
ter 3, Cluster 4, and Cluster 5, respectively. From these
RMSD values, we found that the native-like structure is
the second-lowest free energy state (Cluster 1) and that

the global-minimum free energy state (Cluster 2) is the
second closest to the native structure. In the structure
of Cluster 2, the space where the retinal molecule occu-
pies in the native structure is filled with a helix, and this
increases the contact between helices and seems to stabi-
lize this structure more than the native-like structure of
Cluster 1 with the empty space for the retinal molecule.
Moreover, the result that a helix occupies the retinal
space is consistent with previous works[6, 10] which did
not include the flexibility of helix structures. However,
the previous works were not able to obtain the native-
like structure such as Cluster 1. Hence, the extension
of including the freedom of helix structure distortion has
improved the accuracy of prediction for membrane pro-
tein structure determination by simulation. Our results
suggest that in the simulations without a retinal molecule
the structures can interchange between the structures of
Cluster 1 and Cluster 2. After an insertion of a retinal,
it then stabilizes the native-like structure as shown in
Fig.2. It is important that the association of helices en-
abled them to make a room for an insertion of a retinal
molecule. This is consistent with the experimental results
of bacteriorhodopsin, which observed the spontaneous in-
sertion of a retinal molecule by a helix association[23].

FIG. 1. Typical structures in each cluster selected in the high-
est density region. The RMSD from the native conformation
with respect to all Cα atoms is 3.6 Å, 8.8 Å, 15.8 Å, 15.9
Å, and 16.6 Å for Cluster 1, Cluster 2, Cluster 3, Cluster 4,
and Cluster 5, respectively. Helices are colored from the N-
terminus to the C-terminus: blue (Helix A), lightblue (Helix
B), green (Helix C), deepgreen (Helix D), yellow (Helix E),
orange (Helix F), and red (Helix G).

4 Methods2

We now give the details of our new replica-exchange
methods. We prepare M non-interacting replicas at M
different temperatures. Let the label i (=1, · · · , M) stand
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FIG. 2. Hypothesis about the relation between the global-
minimum free energy state and the second-minimum. The
effect of an insertion of a retinal molecule causes the stabi-
lization of the native-like structure.

for the replica index and label m (=1, · · · , M) for the
temperature index. We represent the state of the entire
system ofM replicas byX =

{
x

[1]
m(1), · · · , x

[M ]
m(M)

}
, where

x
[i]
m =

{
q[i], p[i]

}
m

are the set of coordinates q[i] and mo-
menta p[i] of particles in replica i (at temperature Tm).
The probability weight factor for state X is given by a
product of Boltzmann factors:

WREM(X) =
M∏
i=1

exp [−βm(i)H(q[i], p[i])], (7)

where βm(= 1/kBTm) is the inverse temperature and
H(q, p) is the Hamiltonian of the system. We consider
exchanging a pair of replicas i and j corresponding to
temperatures Tm and Tn, respectively:

X =
n

· · · , x[i]
m , · · · , x[j]

n , · · ·
o

→ X ′ =
n

· · · , x[j]′
m , · · · , x[i]′

n , · · ·
o

,

(8)

where x
[i]′

n ≡
{
q[i], p[i]′

}
n
, x

[j]′

m ≡
{
q[j], p[j]′

}
m

, and

p[j]′ =
√

Tm

Tn
p[j], p[i]′ =

√
Tn

Tm
p[i] [24].

Here, the transition probability ω(X → X ′) of
Metropolis criterion for replica exchange is given by

ω(X → X ′) = min
(

1,
WREM(X ′)
WREM(X)

)
= min(1, exp(−∆)), (9)

where

∆ = ∆m,n = (βn − βm)(E(q[i])− E(q[j])). (10)

Because each replica visits various temperatures followed
by the transition probability of Metropolis algorithm,
REM performs a random walk in temperature space.

We now review two REMs, which are based on ran-
dom walks in temperature space. Without loss of gener-
ality, we can assume that M is an even integer and that

T1 < T2 < · · · < TM . The conventional REM[24–27] is
performed by repeating the following two steps:

1. We perform a conventional MD or MC simulation
of replica i (= 1, · · · ,M) at temperature Tm (m =
1, · · · ,M) simultaneously and independently for
short steps.

2. Pairs of exchange attempts are selected in replica
pairs with neighboring temperatures, for example,
for the odd pairs (T1, T2), (T3, T4),· · · , (TM−1, TM )
or even pairs (T2, T3), (T4, T5),· · · , (TM−2, TM−1).

All the replica pairs thus selected are attempted to be
exchanged according to the Metropolis transition proba-
bility in Eqs. (9) and (10) with n = m+ 1.

We repeat Steps 1 and 2 until the end of the simu-
lation. The canonical ensemble at any temperature is
reconstructed by reweighting techniques[28–30].

We next present the deterministic replica-exchange
method (DETREM)[31]. Only Step 2 is different from
the conventional REM. At first, we introduce an inter-
nal state ym,n as an index of a pair of replicas i and j
at temperatures Tm and Tn, and consider the following
differential equation:

dym,m+1

dt
= σm

1
1 + exp(∆m,m+1)

, (11)

where t is a virtual time, ∆m,m+1 is the same as in
Eq. (10) with n = m + 1, and the signature σm of
the pair of (Tm, Tm+1) changes to 1 or −1 to control
the signature of the change of ym which monotonically
increases or decreases. In Step 2, instead of applying
the Metropolis criterion in Eqs. (9) and (10), we solve
the differential equation in Eq. (11) for the internal
states ym,m+1 ∈ {−1, 1} for (Tm, Tm+1), where the to-
tal number of internal states is M -1 with the following
pairs: (1,2), (2,3), · · · , (M -1,M) for the random-walk
DETREM and the pairs: (1,2), (3,4), · · · , (M -1,M) and
(2,3), (4,5), · · · , (M -2,M -1) for designed-walk REM. The
replica exchange is done as follows[31]:

if updated ym,m+1≷ ±1, then (Tm, Tm+1)→ (Tm+1, Tm),
ym,m+1 ← ym,m+1 ∓ 1, and σm ← ∓1.

For the random-walk DETREM, if ym,m+1 performs ex-
changes, ym+1,m+2 is not time evolved and ym+2,m+3 is
evolved to avoid the leap exchange of temperature such
as from Tm to Tm+2.

Finally, the designed temperature walk can be imple-
mented to both conventional REM and DETREM (and
other REMs) as follows. Namely, the designed-walk
replica-exchange method (DEWREM)[32] is performed
by repeating the following steps.

1. We perform a conventional MD or MC simula-
tion of replica i (= 1, · · · ,M) at temperature Tm (m =
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1, · · · ,M) simultaneously and independently for short
steps.

2. Replica exchange is attempted for all the odd pairs
(T1,T2), (T3,T4), · · · , (TM−1,TM ).

3. Repeat Steps 1 and 2 until all odd pairs perform
replica exchange exactly once. Namely, once a pair is
exchanged, the exchanged pair stops exchange attempts
and keep performing the simulation in Step 1 with the
new temperatures. Replica exchange attempt in Step 2
is repeated until all the other odd pairs finish exchanges.

4–6. Repeat Steps 1–3 where the odd pairs in Steps 2
and 3 are now replaced by the even pairs (T2,T3), (T4,T5),
· · · , (TM−2,TM−1).

7. The cycle of Steps 1 to 6 is repeated until the num-
ber of cycles is M , which is equal to the tunneling count
and all replicas have the initial temperatures.

8. Begin the above cycle of Steps 1–7 with Steps 1 to
3 and Steps 4 to 6 interchanged.
These eight steps are repeated until the end of the simu-
lation.

The schematic picture of this procedure is shown
in Fig. 3. We remark that Step 8, namely, re-
versing the cycle of Steps 1–3 and 4–6, is nec-
essary for the detailed balance condition, because
the entering states are the same as leaving states.
For example, the state (x[1]

1 , x
[2]
2 , x

[3]
3 , x

[4
4 ], x[5]

5 , x
[6]
6 ) is

reached from only two states (x[1]
2 , x

[2]
1 , x

[3]
4 , x

[4]
3 , x

[5]
6 , x

[6]
5 ),

(x[1]
1 , x

[2]
3 , x

[3]
2 , x

[4]
5 , x

[5]
4 , x

[6]
6 ) only and makes transition to

the two states. as shown in Fig. 3, where x
[i]
m is the

state of replica i at temperature Tm. This exchange pro-
cedure satisfies the detailed balance condition for replica
and temperature pair because the trial of exchange pair

γ
(
i(m)→ i(m+ 1)

)
×

ω
(
(xi(m)
m , x

i(m+1)
m+1 )→ (xi(m)

m+1, x
i(m+1)
m )

)
=γ

(
i(m+ 1)→ i(m)

)
×

ω
(
(xi(m)
m+1, x

i(m+1)
m )→ (xi(m)

m , x
i(m+1)
m+1 )

)
(12)

is equal in the route as is shown in Fig. 3, where
γ(i(m) → i(m + 1)) is the selected probability of the
exchange attempt.

This sequential exchange achieves one tunneling count
when M cycles for each replica are finished. In theory,
the estimated ratio of tunneling count between the odd-
even sequential exchange and the conventional random
walk is given by

TCsequential

TCrandom walk
=

Ntrial × PDEW
correction

2M√
Ntrial × PRW

correction

2M

∝
√
Ntrial, (13)

where Ntrial is the number of exchange attempts,
PDEW

correction is the correction for waiting for all the replica

exchanges in Steps 3 and 6, and PRW
correction is the correc-

tion for the deviation of random-walk probability from
the value 1/2.

In order to test the effectiveness of the present meth-
ods, we performed simulations with conventional REM,
DETREM and DEWREM for a 2-dimensional Ising
model. The lattice size in a square lattice was 128
(hence, the number of spins was N = 1282 = 16384).
We have performed conventional random-walk simulation
and designed-walk simulation of both Metropolis REM
and DETREM. We have also performed a mixed random-
walk and designed-walk simulation of DETREM, where
we repeated the two walks alternately. The total number
of replicas M was 40 and the temperatures were 1.50,
1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.94, 1.98,
2.01, 2.04, 2.07, 2.10, 2.13, 2.16, 2.19, 2.22, 2.25, 2.28,
2.31, 2.34, 2.358, 2.368, 2.38, 2.40, 2.42, 2.44, 2.47, 2.51,
2.57, 2.63 ,2.69, 2.75, 2.82 ,2.90, 3.00, 3.10, and 3.15.
Boltzmann constant kB and coupling constant J were set
to 1. Thus, β = 1/kBT = 1/T = β∗, and the potential
energy is given by E(s) = −

∑
<i,j> sisj , where si = ±1,

and the summation is taken over all the nearest-neighbor
pairs in the square lattice.

For the conventional random-walk REM and DE-
TREM, replica-exchange attempt was made every 1 MC
step. One MC step here consists of one Metropolis up-
date of spins. The total number of MC steps for all the
simulations was 100,000,000. To integrate Eq. (11), we
used the fourth-order Runge-Kutta method with virtual
time step dt = 1. For DEWREM, replica-exchange at-
tempt was made every 20, 50, 100, 150, 200 MC steps in
the conventional REM simulations and every 20, 50, 100,
150, 200, and 250 MC steps in the DETREM simulations
(see Table I). The mixed-walk simulation was performed
in which after 4M(= 160) even-odd or odd-even cycles
of designed-walk simulations (replica-exchange attempt
was made at every 20 MC steps) were performed, 200,000
MC steps (which roughly corresponds to 2M cycles) of
random-walk simulations (replica-exchange attempt was
made at every 1 MC step) were performed, and then this
procedure was repeated. For reweighting analyses ([28–
30, 33]), the total of 10,000 spin state data were taken
with a fixed interval of 1,000 MC steps at each tempera-
ture from the REM simulations.

5 Results2

Table I lists the mean tunneling counts per replica for
each method, which is the number of times where the
replicas visit from the lowest temperature through the
highest temperature and back to the lowest during the
simulation. The mean tunneling counts per replica of
the designed-walk simulations at every 10 MC attempts
were about twice larger. These large tunneling counts im-
ply that in designed-walk method all replicas traversed
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more efficiently in temperature space, and our design to
maximize the tunneling counts for all replicas without
random walks was successful. For the mixed-walk sim-
ulation, the maximum tunneling count was about twice
larger than that of random-walk DETREM. The mean
tunneling count was almost the same as that of designed-
walk DETREM.

We next examine physical quantities obtained from the
designed-walk simulations with various replica-exchange
attempt frequencies and mixed walk simulations and
compare them to those from the conventional random-
walk simulations. Fig. 4(a) and Fig. 4(b) show the
specific heat C as a function of T during the con-
ventional REM simulations and the DETREM simula-
tions, respectively. They were obtained by the reweight-
ing techniques[28–30, 33]. This shows that designed-
simulation with shorter replica-exchange interval such as
every 10 and 20 MC steps underestimated the heat capac-
ity near the critical temperature although the transition
point is sufficiently similar to the exact critical tempera-
ture at Tc = 2.269. As the intervals of replica-exchange
attempts are longer, the accuracy of heat capacity is
higher. Moreover, the combination of the random-walk
and designed walk also increased the accuracy. This sug-
gests that the designed-walk replica-exchange attempts
caused correlation between replicas. The correlation
seems to be very strong near the critical temperature.
As a result, the heat capacity is underestimated slightly.
Fig. 5(a) and Fig. 5(b) show susceptibility χ as a func-
tion of temperature obtained from the random-walk and
designed-walk simulations of Metropolis REM and DE-
TREM, for DETREM including the mixed-walk simula-
tion. This figure shows that by extending intervals of
replica-exchange attempts DEWREM simulation can re-
produce the results of random-walk REM in both conven-
tional REM and DETREM. However, we observe slower
relaxation of susceptibility in different replica exchange
intervals to the conventional results than that of heat
capacity. Moreover, these physical quantities show that
repeating a random walk and designed walk simulation in
mixed-walk simulation is an efficient way to increase the
accuracy of results and the number of tunneling counts
at the same time.

However, these physical quantities show that mixed-
walk simulation can increase the accuracy of results and
the number of tunneling counts and DEWREM simula-
tion is suited for simulations with longer time intervals
between replica-exchange attempts.

6 Summary and future prospect

The first part of this article gave the results of protein
structure prediction for bacteriorhodopsin with the flex-
ible treatment of transmembrane helix backbone struc-
ture and our recently extended implicit membrane model.

We obtained not only the native-like structure but also
the associated structure with an empty space for retinal
molecule insertion. These structures are also consistent
with previous experimental results.

In the next part, we compared the deterministic
replica-exchange method and designed walk replica-
exchange method to the conventional REM in 2-
dimensional Ising model. DETREM exactly reproduced
the results of conventional REM including phase transi-
tion. On the other hand, DEWREM needs longer inter-
val between replica-exchange trials because of correlation
caused by the introduction of designed walk, which may
break the Markov process in short interval resulting in
the deviation from the exact value near the critical tem-
perature. To avoid this correlation, mixing random walk
is a better way to remove the correlation.

Finally, we will give some perspectives for future work.
We will first apply our structure prediction method to un-
known membrane proteins which obtained the low res-
olution structure.. Secondly, DETREM can introduce
the methods for faster convergence in machine learning
because this method has the same mathematical formu-
lation of Boltzmann machine. Thirdly, the way for fast
reduction of correlation among replicas in shorter interval
is useful in the application of spin systems in DEWREM
while another system such as a peptide usually employs
longer time interval in REM.

FIG. 3. An schematic picture of time series of tempera-
ture indices in DEWREM with 6 replicas. The left cycle
begins with the temperature exchange of odd index pairs
(T1, T2), (T3, T4), and (T5, T6), then tries with even pairs
(T2, T3) and (T4, T5). The right cycle begins with even pairs
and next tries odd pairs. They are the reverse cycles of each
other and their combination satisfies the detailed balance con-
dition of replica exchange.
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TABLE I. The mean number of tunneling counts per replica.

TC Random walk Designed walk Mixed walk

Met DETREM Met DETREM DETREM

Interval 1 1 20 50 100 150 20 100 150 200 1 & 20

Mean 173 178 292 197 131 99 231 93 69 55 293

± SD 9.5 8.8 56 41 27 21 48 20 15 11 6

TC, Interval, SD, Met stand for tunneling counts, the
number of MC steps between replica-exchange attempts,
standard deviation, and REM based on Metropolis criterion,
respectively. The frequency (1 & 20) of Mixed walk means
that it was 1 MC step for random walk REM and 20 MC
steps for designed-walk REM.

FIG. 4. Specific heat C as a function of T from the (a) REM,
(b) DETREM simulations including the mixed-walk simula-
tion. The error bars are smaller than the symbols. In the
inset, the labels are as follows. exact: exact solution, RW:
random walk, DEWn: DEWREM with the interval of n MC
steps, and mixed: mixted walk (see Table 1). The exact re-
sults for the lattice size L =128 (black curves) were obtained
by Berg’s program [34] based on Ref. [35].
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