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Abstract

As the characteristic lengths in nanoelectron-

ics devices approach the nanometer and sub-

nanometer regimes, it is becoming increasingly

clear that device properties at the nanoscale

cannot be interpolated straightforwardly from

bulk properties. To aid in understanding and

controlling such nanoscale properties, first-

principles simulation based on the Kohn-Sham

(KS) formalism of density functional theory

(DFT) [1, 2] has now become a go-to method.

However, conventional KS-DFT is a ground-

state method and cannot simulate devices op-

erating under bias voltage. To this end,

we developed what we now call the orbital-

separation approach, which is capable of sim-

ulating metal/insulator heterostructures with

different Fermi levels in each of the metallic

parts. In this report, we review this method

and its application to investigation of the inter-

esting phenomena of negative capacitance that

has been reported in ferroelectric heterostruc-

tures.

1 Orbital-separation

approach for finite-bias sim-

ulations from first principles

1.1 Introduction

Advances in process technologies have made

possible fabrication and observation of devices

at nanometer or even subnanometer scales.

Such nanodevices sometimes exhibit peculiar

properties that cannot be understood from

bulk properties of the constituent materials.

In this work, we concentrate on the capaci-

tance, which determines the amount of charge

Q that can be induced by application of bias

voltage V (C = dQ/dV ), which is a fundamen-

tal property in the design of all semiconductor

devices. Classically, the capacitance per unit

area of a parallel-plate capacitor is determined

from the permittivity ε and thickness d of the

dielectric film as

C

A
=

ε

d
. (1)

Continuation of the scaling-down of semicon-

ductor device design rule requires increasing
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C/A. This is because the basic idea for achiev-

ing higher computation power and data stor-

age density is to cram more device elements

onto a chip, and this translates to decreasing

real-estate per device element. For capacitors

and transistors to function properly, the ca-

pacitance has to be maintained despite the de-

creasing area assigned to each device, which

translates to higher capacitance per unit area.

To obtain higher capacitance density, it is ap-

parent from Eq. (1) that one should employ

high-permittivity dielectric (the so-called high-

k materials) films that are made as thin as pos-

sible while still being thick enough to suppress

tunneling current between electrodes. How-

ever, it has been found that in many cases,

the capacitance degrades rather significantly

compared to that predicted from Eq. (1) in

nanometer-thin dielectrics. This has been ex-

plained by so-called interfacial “dead layers”

having a degraded permittivity compared to

bulk. First-principles simulations have indi-

cated that this is an intrinsic effect that remain

even in perfectly epitaxial metal/dielectric in-

terfaces, although the amount of the effect de-

pends on the screening capabilities of the metal

as well as the specifics of the chemical bonds at

the interface [3, 4]. On the other hand, exper-

iments report varying capacitance values de-

pending on processing conditions, which indi-

cate that various types of defects and inter-

face chemistry are also at play. The dead layer

problem is a significant bottleneck towards re-

alizing further scaling in the semiconductor in-

dustry [5].

To assist in the understanding and design

of such interface effects for future nanoelec-

tronics, it may be natural nowadays to re-

sort to atomistic simulations based on the

Kohn-Sham (KS) formalism of density func-

tional theory (DFT). However, since the capac-

itance is the response of the metal/insulator

heterostructure to external bias voltage, it is

not straightforward to utilize KS-DFT, which

is conventionally a ground state theory, for

such simulations. Linear-response type meth-

ods such as density functional perturbation

theory (DFPT) [6] are applied routinely to cal-

culate bulk permittivities, but it cannot be ap-

plied to metal/insulator heterostructures. One

may also be interested in nonlinear regimes

such as polarization reversal in ferroelectric

systems under bias. To this end, many finite-

bias methods have been developed [7, 8, 9,

10, 11, 12, 13, 14, 15, 16], but none of them

are perfect; each have limitations in efficiency,

accuracy, geometric constraints, and/or diffi-

culty in implementation and use. We have

given a somewhat thorough discussion on these

methods in Ref. [17]. To overcome many of

these limitations and to provide an efficient

KS-DFT-based methodology for simulation of

metal/insulator heterostructures under bias,

we developed what we now call the orbital-

separation approach (OSA) [17, 18]. This

method will be briefly discussed below.

1.2 Orbital-separation approach

In conventional KS-DFT [2], the N -electron

Schrödinger equation is rewritten as a set of

single-particle KS equations(
− h̄2

2m
∇2 + veff(r)

)
φi(r) = εiφi(r), (2)

where veff is the KS effective potential contain-

ing the external potential (usually from the nu-

clei), the electrostatic (Hartree) potential, and

the exchange-correlation potential that con-

tains all remaining many-body effects

veff = vext(r) +

∫
d3r′

ρ(r′)
|r− r′| + vxc(r). (3)

ρ(r) is the electron density that is constructed

from KS orbitals {φi} as

ρ(r) =
∑
i

fσ(εi − εF)|φi(r)|2, (4)

where fσ(ε−εF) is the occupation function and

εF is the Fermi level determined from charge

conservation ∫
ρ(r)dr = N. (5)
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Since ρ appears in Eq. (2), which in turn de-

termines ρ through its solutions {φi}, these

equations are solved iteratively until self-

consistency is reached. Note that Brillouin

zone integration over k-points is necessary in

periodic systems but have been omitted in the

above equations for simplicity. In the OSA, the

occupation scheme for constructing the den-

sity ρ is modified to simulate systems under

external bias voltage. The self-consistency it-

erations are carried out in exactly the same

manner as in conventional KS-DFT.

vacuum vacuummetal metalinsulator

x

z

y

εF εF
εF,L

εF,R

(a)

(b)

Figure 1: (a) Schematic of the metal-insulator-

metal slab model considered in this study. The

red lines indicate the boundaries of the peri-

odic boundary condition. (b) Schematic of the

orbital separation procedure around the Fermi

level. Adapted from Ref. [17].

As a demonstration, we consider a

metal/insulator/metal capacitor slab structure

shown in Fig. 1. We employ the widely-used

dipole correction procedure for canceling the

electrostatic interaction between adjacent

unit cells across the vacuum [8]. When the

metallic parts are well-separated by insulating

parts, the KS orbitals with eigenenergies near

the Fermi level can be separated out into

each of the electrodes because there are no

eigenstates within the band gap of insulators.

The separation is performed by examining the

real-space extent of the KS orbitals within a

preset energy window around the ground state

Fermi level in each step of the self-consistency

iterations. It is also possible to perform the

separation in reciprocal space [19]. When

employing symmetric electrodes, degeneracy

between states in two electrodes may cause

KS orbitals to have finite amplitude in both

electrodes; in such cases, it is possible to

perform a unitary transformation to separate

the orbitals. In practice, we start the self-

consistency loop from a slightly perturbed

initial electron density by applying a sawtooth

potential, for example, to lift the degeneracy.

Once the KS orbitals are separated and

grouped into each electrode, the occupation

numbers are determined by applying different

Fermi levels to each group of orbitals, and the

density ρ(r) is constructed accordingly. This

density is then used in constructing the KS

effective potential for the next step of the self

consistency loop. Generalizing to two or more

electrodes well separated by insulating parts,

the occupation in the OSA is given as

fi,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, εi,k < εlowerwin

0, εi,k > εupperwin

fσ(εi,k − εF,α(i,k)), εlowerwin ≤ εi,k

≤ εupperwin ,

(6)

where ε
upper (lower)
win is the upper (lower) bound

of the energy window, and α(i,k) specifies to

which electrode the KS orbital φi,k belongs

(note that we have resurrected the k-point

notation for Brillouin zone integration). The

Fermi levels in each electrode are determined

so as to maintain total charge neutrality

∫
ρ(r)dr =

∫
dr

∑
k,i

wkfσ(εi,k − εF,α(i,k))

× |ψi,k(r)|2 = N

(7)

where wk is the k-point weight, while also

maintaining specified bias voltages with re-



spect to one reference electrode

εF,1 − εF,0 = eV1

εF,2 − εF,0 = eV2

...

εF,αmax − εF,0 = eVαmax .

(8)

The above procedure makes possible con-

stant voltage (closed-circuit) simulations, but

one may also desire to perform constant charge

(open-circuit) simulations, which are especially

useful for examining ferroelectric systems as

pointed out in Ref. [20]. As long as noth-

ing drastic occurs at the interface (e.g., chemi-

cal reactions involving atoms belonging to the

metallic slab), the bias voltage has minimal ef-

fect on the KS orbitals of the electrodes. Thus,

it is possible to calculate the free charge by

comparing the occupation before and after bias

application, and it is straightforward to deter-

mine the bias voltages that result in a preset

free charge. Details on this constant charge

scheme are given in Ref. [18].

It is worth pointing out that the OSA can be

understood as a variant of the ΔSCF approach

for simulating excited states of molecules [21,

22]. In the ΔSCF approach, electron-hole pairs

are introduced by transferring an electron from

an occupied to an unoccupied KS orbital, and

performing the self consistency procedure with

this occupation scheme. Although this method

seems, at first sight, to be unjustified within

the framework of KS-DFT, a formal basis was

put forth in Ref. [23] as an approximation to

an exact excited-state KS formalism.

We also note that the Hellman-Feynman

forces acting on the nuclei can be calculated

with no modification in conventional KS-DFT

codes [17]. Thus, it is possible to simulate the

dielectric response originating from ionic po-

larization, and it is also possible to perform

molecular dynamics simulations using OSA.

The only clear limitation of the OSA is

that it cannot handle situations where there is

non-negligible electronic current between elec-

trodes, because in such cases, the KS orbitals

cannot be separated unambiguously into each

electrode. This means that the amount of volt-

age that can be applied is limited by the band

gap and the band offset at the metal/insulator

interfaces. It can be applied as long as KS or-

bitals are employed in the calculations, which

means that it can be implemented in codes

employing any type of basis set (plane wave,

wavelet, pseudoatomic orbitals, etc.).

Finally, we list a few useful equations for cal-

culating capacitance and the local permittivity

in a metal-insulator-metal model. The differ-

ential capacitance can be evaluated from the

definition C = dQ/dV , but it can also be cal-

culated from the total energy as [17]

C =
1

V

dE

dV
. (9)

This can come in handy when one wants to

avoid the overhead (and possible complica-

tions) in calculating the free charge Q. The

inverse local permittivity between the elec-

trodes can be calculated from the capacitance

and the local macroscopically-averaged elec-

trostatic potential V̄H as (see supplementary

material of [24])

1

εr(z, V )
= − ε0A

C(V )

∂2[ΔV̄H(z, V )]

∂V ∂z
. (10)

The above quantities calculated while fixing

the positions of the nuclei correspond to optical

frequency response, while those calculated by

fully relaxing the nuclear positions correspond

to static frequency response of the system.

1.3 Test on typical capacitor:

Au/MgO/Au

To confirm the validity of this method, we im-

plemented the OSA in Vienna ab-initio Sim-

ulation Package [25, 26] and performed finite

bias simulations on the Au/MgO/Au capacitor

shown in Fig. 2 (a) [17]. As shown in Fig. 2 (b),

the electronic states near the Fermi level have

virtually zero amplitude in the middle of the

insulating MgO slab, although there are some

metal-induced gap states penetrating within
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Figure 2: (a) Schematic of the Au/MgO/Au

slab model considered in this study. (b) The

local density of states within ±1 eV around

the Fermi level. (c) The bias-induced change

in the local electrostatic potential calculated

with ions fixed (solid line) and after full ionic

relaxation under 0.6 V. (d) The macroscopic

average of (c). Adapted from Ref. [17].

a few angstroms from the interface. Thus,

the OSA is applicable to this system. When

the finite- bias calculations are performed with

atoms fixed to their zero-bias relaxed positions,

the induced potential ΔVH is flat in the elec-

trodes and drops linearly in the insulator as ex-

pected from classical electrostatics. The differ-

ence in ΔVH between the Au electrodes equals

the applied Fermi level difference (Fig. 2 (c)),

implying that the self-consistent procedure is

working as expected. When the atoms are al-

lowed to relax under bias (corresponding to

static frequency response), ΔVH oscillates due

to local ionic polarization, but the classical pic-

ture still holds if one performs macroscopic av-

eraging of the potential (Fig. 2 (d)).

The total energy vs. the applied bias is a

parabolic curve within numerical error, and

 Fixed
 Relaxed

0.2 0.4 0.6 0.8
0

10

20
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40
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Ca
pa
cit
an
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 C
/A
 (f
F·
µm
－
2 )

Bias voltage V (V)
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(a)
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0.0 0.2 0.4 0.6 0.8 1.0
0

5
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15  Fixed
 Relaxed

E/
A 
(1
0－
4 e
V·
Å－

2 )

9 MgO layers

Bias voltage V (V)

Figure 3: The calculated energy (a) and ca-

pacitance (b) as a function of applied bias.

Adapted from Ref. [17].

the capacitance evaluated from Eq. (9) is vir-

tually constant (Fig. 3). It is notable that

the energy increases with relaxation; although

this may seem strange at first sight, it is actu-

ally reasonable because ionic polarization al-

lows further charging of the capacitor when a

battery is connected at constant bias.

The calculated capacitance and induced po-

tential can be used to calculate the local per-

mittivity from Eq. (10) as shown in Fig. 4. The

permittivities in the middle of the metal slabs

diverge, while the values in the middle of the

MgO slab for optical and static response corre-

spond almost exactly to bulk values calculated

using DFPT. The numerical consistency with

DFPT results indicate the high reliability of

the OSA. The small oscillations near the in-

terface originate from the chemical details of

the interface, giving rise to an interfacial ca-

Activity Report 2015 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

19



15 20 25 30 35 40 45 50
0.0
0.1
0.2
0.3
0.4

1/3.18

1/∞

 

1/
ε r

z (Å)

1/9.59

 ε∞r
 ε0r

Au AuMgO

Figure 4: The calculated inverse permittivity

profile of the Au/MgO/Au capacitor.

pacitance component that adds in series to the

bulk capacitance.

1.4 The intrinsic dead layer effect:

SrRuO3/SrTiO3/SrRuO3

STOSRO SRO

1/∞

0 20 40 60 80

0.00

0.01

0.02

0.03

1/
ε
r

z (Å)

1/640

0

Figure 5: The calculated inverse permittivity

profile of the SRO/STO/SRO capacitor.

Next, we apply the OSA to a system with

much more prominent interfacial capacitance

component; we reexamine the intrinsic dead

layer effect in the SrRuO3 (SRO)/SrTiO3

(STO)/SRO capacitor that was reported in

Ref. [3]. A different finite-bias approach based

on maximally-localized Wannier functions [15]

was used in Ref. [3], but we obtain essentially

the same results here (Fig. 5). The dielectric

constant is severely decreased at the interface,

amounting to an interfacial capacitance com-

ponent of 610 fF/μm2. This translates to an

upper limit of 305 fF/μm2 on the capacitance

that can be attained by simple scaling-down of

dielectric thickness, since for very thin high-εr
dielectrics, the total capacitance will be dom-

inated by the interfacial component. In the

6-layer STO capacitor shown here, the cal-

culated capacitance is 270 fF/μm2, which is

very close to this intrinsic limit. The sever-

ity of this dead layer problem is not limited

to such ultrathin cases. Even for a capacitor

with STO as thick as 54 nm, the total capaci-

tance would have only 74% of the nominal ca-

pacitance calculated using the bulk dielectric

constant εr = 640 and Eq. (1).

1.5 Quantum capacitance

of graphene

In certain situations, quantum effects can

have a large impact on the total capaci-

tance. One such known situation is when us-

ing graphene as the electrode [27, 28]. Due

to its conical band dispersion with zero DOS

at the Fermi level, the Fermi level position

has to be displaced significantly to charge

graphene. The bias voltage does not match

the potential difference as depicted schemat-

ically in Fig. 6, and this results in a bias-

dependent quantum capacitance component

that adds in series to the geometric capaci-

tance of Eq. (1). To test whether the OSA

can treat this effect, we performed calculations

on the graphene/vacuum/graphene capacitor

shown in Fig. 7 (a) [17]. The electrostatic po-

tential difference between the electrodes is pre-

dicted to be smaller than the applied voltage in

line with the above-mentioned picture (Fig. 7

(b)). The calculated capacitance (Fig. 8) can

be fitted decently with an approximate ana-

lytical formula for the quantum capacitance in

this system [17, 27]. Thus, we can judge that

the OSA can be used to calculate quantum ca-

pacitance effects.

1.6 Summary

We developed the orbital-separation approach

for simulating the effect of applied bias on

metal/insulator heterostructures within the

Kohn-Sham formalism of density functional
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Figure 6: Schematic of the situation in

graphene giving rise to the quantum capaci-

tance.

(a)

(b) 1 nm 1 nm
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-0.4
-0.2
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 0.6 V
 1.0 V

V H
(z
) (
V)

z (Å)

Figure 7: (a) Schematic of the

graphene/vacuum/graphene capacitor and

(b) xy-plane average of the electrostatic

potential difference with respect to zero bias.

The dashed vertical lines correspond to the

position of the graphene sheets. Adapted from

Ref. [17].

theory. The method is shown to be robust,

efficient, and reliable. We showed that the

method can be applied to examination of the

dead layer effect as well as the quantum effects

on the capacitance. Finally, we note that the

application of the OSA is not limited to calcu-

lation of the dielectric response; it also holds

much future promise for applications in a wide

range of problems where bias voltage is an im-

portant factor such as electrochemical devices

and scanning probe microscopy.

0
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C = 1/V dE/dV
C = dQ/dV Cgeo /A

0.0 0.2 0.4 0.6 0.8 1.0
Bias voltage V (V)

Ca
pa
cit
an
ce
 C
/A
 (f
F·
µm
－
2 )

Figure 8: The capacitance calculated from

voltage vs. energy (white circles) and volt-

age vs. induced charge (black squares). The

dashed line indicates the geometric capaci-

tance obtained from the fitting to analytical

formula (see Ref. [17] for details). Adapted

from Ref. [17].

2 Negative capacitance of

multi-domain ferroelectric-

paraelectric bilayer capaci-

tor under bias

2.1 Introduction

As mentioned above, the difficulty to increase

the capacitance due to the dead layer effect

is a significant bottleneck that must be over-

come for future nanoelectronics. One possibil-

ity that has been gaining attention recently is

the utilization of negative capacitance. Since

series capacitance adds up as C−1 = C−1
1 +

C−1
2 , negative capacitance implies that its ad-

dition to a capacitor in series results in capac-

itance enhancement without further thinning

of the dielectric layer. Recently, experimen-

tal works have reported capacitance enhance-

ment in two-dimensional electron gas near de-

pletion [29], as well as in ferroelectric thin films

[30, 31, 32, 33, 34]. Here, we focus on the lat-

ter.

According to elementary electrostatics, the

inverse capacitance is proportional to the cur-

vature of the internal energy vs. electric dis-
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placement curve, i.e.,

C−1 =
d2U

dD2
. (11)

Thus, negative capacitance is attained in the

middle region of the double-well energy land-

scape of ferroelectric materials. Of course,

this region is unstable and bulk ferroelectrics

spontaneously polarize. However, it has

been suggested that depolarizing field effects

can suppress the polarization [35], result-

ing in stabilization of the near-zero polar-

ization negative capacitance state. Such ef-

fects can be introduced by placing a para-

electric material in series with the ferroelec-

tric, or it can also take the form of polar-

ization stiffening due to the interfacial dead

layer. Indeed, uniform spontaneous polariza-

tion in metal/ferroelectric/metal heterostruc-

tures was found to be suppressed when the fer-

roelectric was thinned down to a few unit cells

as a result of the interfacial dead layer effect

[36, 4].

Figure 9: Schematic of the confinement of de-

polarizing field to the surface region by stripe

domain formation.

The above discussion has been criticized for

overlooking the fact that ferroelectrics usually

form polarization domains to decrease the de-

polarization energy [37, 38, 39, 40, 41, 42]. By

forming 180◦ domains, the surface polarization

charge of adjacent domains cancel each other

and the depolarizing field is confined near the

surface of the film (Fig. 9). This allows the

ferroelectric to polarize and lower the energy

of the system, so the magnitude of the nega-

tive capacitance effect would be severely lim-

ited [43]. On the other hand, works on various

heterostructures containing ferroelectric films

have shown that the domain structure does

not always appear, and that the domain forma-

tion in thin films depends on the film thickness,

electrical boundary conditions, and the specific

ferroelectric material [44, 45, 46, 47, 48, 49].

We also recall that capacitance enhancement

has indeed been measured by several workers

as mentioned above.

In Ref. [24], we set out to clarify this situa-

tion using first-principles simulation. We em-

ployed the orbital-separation approach to sim-

ulate the ferroelectric thin film system under

bias, focusing on the response of the polariza-

tion domain structure to applied bias voltage

and the resulting capacitance. We give a some-

what shortened version of the work presented

in Ref. [24] and refer the reader to the orig-

inal paper for more in-depth discussion with

various subtleties in translating the simulation

results to experimental systems.

2.2 Method and Model

We employ the orbital-separation approach

implemented in VASP for finite bias calcu-

lations. We consider a metal-ferroelectric

(FE)-paraelectric (PE)-metal bilayer capacitor

where SrRuO3 (SRO) is used as the metallic

electrodes, BaTiO3 (BTO) is used for the fer-

roelectric layer, and SrTiO3 (STO) is used as

the paraelectric layer. The model consists of

1 × 4 in-plane perovskite unit cells for con-

sideration of 180◦ striped domains. We also

consider a model with only one in-plane unit

cell to constrain the system to be monodomain;

this model will serve as a reference to compare

to the above multidomain model and elucidate

the effect of domain formation. We also calcu-

late a metal-PE-metal capacitor with the same

number of PE layers to single out the effect of

the FE layer. The in-plane unit cell size is

constrained to that of bulk cubic STO to im-

plicitly model the epitaxial growth of the mul-

tilayer structure on STO substrate. The ca-
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pacitor models are relaxed under finite biases

to simulate the static (DC) dielectric response

and examine the stability of the polarization

domain structure.

2.3 Results and Discussion

2.3.1 Formation of striped domains

0 20 40 60 80 100

-0.1

0.0

0.1

δ
Ti
-O
 (Å
)

z (Å)

bulk

bulk

SRO SROBTO STO
multi-
domain

multi-
domain

mono-
domain

Figure 10: Anion-cation displacement in the

TiO2 layers of BTO and STO at zero bias. Re-

sults in monodomain and multidomain FE-PE

capacitor models are compared. The value in

bulk BaTiO3 is indicated by arrows.

0.1 Å 
Sr

Ba
Ru

Ti
O

Figure 11: The local cation displacements in

the BTO part of the stripe domain FE-PE ca-

pacitor model. Adapted from Ref. [24].

Figure 10 compares the local polarization

perpendicular to the interface of the relaxed

bilayer capacitor model with four in-plane unit

cells and that with only one in-plane unit cell.

The polarization is suppressed in the single

unit cell model, but the four-unit cell model

shows finite polarization in two directions due

to striped domain formation (Fig. 11). The

energy gain by domain formation is ∼ 20 meV

per in-plane unit cell; this means that indeed,

it is more favorable to break up into domains to

lower the depolarization energy. However, the

magnitude of the polarization is smaller than

bulk, implying that there is some remaining

depolarizing effect due to the combination of

epitaxial strain and interface effects.

2.3.2 Bias dependence of the capaci-

tance and domain structure
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Figure 12: The calculated capacitance as a

function of applied bias for PE (triangles),

monodomain PE-FE (circles), and striped do-

main PE-FE capacitors. The calculated free

charge for the striped domain PE-FE system

is shown in the inset. From Ref. [24].

Figure 12 shows the calculated differential

capacitance dQ/dV of the metal-FE-PE-metal

bilayer capacitor with and without polariza-

tion domains compared to the metal-PE-metal

capacitor. Near zero bias, the monodomain

FE-PE bilayer capacitor shows capacitance en-

hancement over the monolayer PE capacitor,

implying that the FE layer shows negative ca-
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Figure 13: Schematic of the antiferroelectric-

like evolution of the polarization domains un-

der bias. Negative capacitance is observed

within the shaded region.

pacitance due to the suppression of polariza-

tion. On the other hand, the more realistic

multidomain model shows lower capacitance

than the PE capacitor, indicating that domain

formation indeed inhibits the emergence of the

negative capacitance effect. However, once

we turn on the bias voltage and examine the

voltage dependence, we find that the capac-

itance shows hysteretic behavior with a large

enhancement over the monolayer PE capacitor.

This behavior is due to the antiferroelectric-

like domain evolution summarized in Fig. 13.

At low bias, the striped domain state is stable

and no negative capacitance effect is observed.

At higher biases, the monodomain state be-

comes stable and remains so until the bias is

lowered below 0.1 V. The negative capacitance

effect is seen within this monodomain regime,

and the multidomain-monodomain transition

also contributes to a huge capacitance en-

hancement.

2.4 Summary

We employed our newly-developed orbital sep-

aration approach to examine the possibility

of the emergence of negative capacitance in

ferroelectric ultrathin films. Although sev-

eral experimental works had reported rather

large negative capacitance effects, it was not

clear how such an effect was viable when con-

sidering domain formation. In this work, we

showed that at least when the ferroelectric film

is thinned down to a few unit cells, a not-so-

large bias of ∼ 0.2 V is sufficient to turn the

system into a monodomain state with signifi-

cant capacitance enhancement due to the neg-

ative capacitance effect. Further experimental

and theoretical studies are necessary to clarify

the effects of non-idealities not taken into ac-

count in this work such as finite-temperature,

defects, and nucleation.
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