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1 Introduction

Recent years have witnessed a surge of interest

in topological insulators (TIs), which provide

a new research platform in condensed matter

physics. TIs have nontrivial band structures

due to the spin-orbit coupling. A striking fea-

ture in TIs is that they host gapless edge states

at boundaries, which are protected topologi-

cally. The notion of TI was originally pro-

posed for graphene [1] and also for HgTe/CdTe

quantum wells [2]. The latter TI was con-

firmed experimentally [3]. Also, many exam-

ples of TIs in three dimensions have been found

in bismuth-based compounds, etc.[4, 5]. Al-

though theory for TIs has been mainly de-

voted to non-interacting systems so far, cor-

relation effects on them have attracted much

attention, since novel aspects of electron corre-

lations would emerge under topologically non-

trivial conditions. This issue has further been

stimulated by the fact that there are a vari-

ety of candidates for correlated TIs [6, 7, 8, 9],

such as SmB6 [10, 11], etc. In spite of extensive

studies, understanding of topological phases in

correlated systems[12, 13, 14, 15, 16, 17, 18, 19,

20], especially a topological Mott insulator, is

still not sufficient. As mentioned above, gap-

less edge modes which are a source of exotic

and rich physics are induced by bulk nontriv-

ial properties in free fermion systems. Even in

correlated systems, the nontrivial band struc-

ture would lead to novel gapless edge states;

for example, edge states composed only of spin

excitations in topological Mott insulators.

Here, we report our recent studies on the

correlated TIs[21, 22]. We first discuss a topo-

logical Mott insulator in one dimension (1D)

in Sec.2 to address how the edge Mott states

emerge due to the interplay of topology and

correlation [21]. We demonstrate, based on

DMRG calculations with high accuracy, that

the topological Mott insulator accompanied by

the edge Mott states is indeed stabilized. In

Sec.3, we then address a similar question for

a two-dimensional (2D) correlated TIs [22]. In

this case, we find a remarkable property caused

by the interplay of topology and correlation:

the topological properties emerge with increas-

ing temperature in the presence of strong cor-

relations. We demonstrate that the above

counterintuitive properties are not specific to

the model employed here but rather generic

for correlated TIs. In Sec.4, we briefly explain

some related topics we have studied in recent

years [23, 24, 25, 26]. Brief summary is given

in Sec.5.

2 Topological Mott insulator

in 1D

We start with a fundamental question:

whether a topological Mott insulator really

emerges in correlated system, and if so, how

the edge states behave in the presence of the

interaction. To address this question, we

here investigate a prototypical TI with Hub-

bard interaction in 1D [21]. By examining

the bulk topological invariant and the entan-

glement spectrum of the correlated electron

model, we elucidate how gapless edge states

in a non-interacting TI evolve into Mott edge

states in a topological Mott insulator. Fur-

thermore, we propose a topological Mott tran-
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sition, which is a new type of topological phase

transition. This unconventional transition oc-

curs in spin liquid phases in the Mott insula-

tor and is accompanied by zeros of the single-

particle Green’s function and a gap closing in

the spin excitation spectrum.

We consider a 1D correlated Su-Schrieffer-

Heeger (SSH) model, which describes a bond-

alternating tight binding model with electron

correlation. The Hamiltonian reads,

HSSH =
∑
iσ

(−tc†i+1aσcibσ + V c†iaσcibσ + h.c.)

+ U
∑
iα

niα↑niα↓ + J
∑
i

Sia · Sib (1)

with niασ = c†iασciασ, where c†iασ(ciασ) is a

creation (annihilation) operator for an elec-

tron at site i and in orbital α = a, b and spin

σ =↑, ↓ state. We introduce the third term

representing the ferromagnetic spin exchange

interaction, which is crucial for a topological

phase transition induced by electron correla-

tions. We recall that in the non-interacting

case, in the region of −t < V < t, the system

is in a TI phase protected by chiral symme-

try, which is characterized by a nonzero wind-

ing number. Note that the symmetry is es-

sential for determining the topological prop-

erties, and our analysis is valid generically

for the 1D chiral-symmetric class. We em-

ploy the density-matrix renormalization group

(DMRG) method, which provides a powerful

tool to compute the ground-state quantities

with high precision. In what follows, we choose

the hopping integral t as the energy unit.

(a) Topological Mott phase with spinon edge

states

Let us start with a Topological Mott insula-

tor by setting J = 0 in the model Hamilto-

nian [21]. The obtained results are shown in

Fig. 1. It is seen from Fig. 1(a) that even in

the presence of U , the winding number takes

N1 = 1, implying that the system is always in

a topological phase. Although the noninteract-

ing TI continuously changes to the Mott insu-

lator in the bulk with keeping N1 = 1, the edge
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Figure 1: Results obtained for the parameters

(J, V ) = (0,−0.4) [21]: (a) winding number N1

for chain length L = 11, (b) double occupancy

of orbital a at the edge site for several choices

of L, (c) ((d)) single particle (spin) excitation

gap under open boundary conditions.

site shows a discontinuous change at U = 0;

namely as seen from Fig. 1(b), the double oc-

cupancy abruptly decreases once the interac-

tion U is introduced. This implies the forma-

tion of a local spin around the edges. This

abrupt change signals the emergence of topo-

logical edge-Mott states, where electron corre-

lations play a crucial role. Namely, the emer-

gent local spin is not completely free, but still

screened even after the abrupt change, imply-

ing that the edge states are strongly correlated.

As seen from Fig. 1(c), this abrupt change is

accompanied by a gap formation for the single

particle excitations at the edges, while the col-

lective spin excitations are still gapless. The

latter may be referred to as gapless ”spinon

edge states”. These observations lead us to the

conclusion that at U = 0 a correlated edge-

Mott state with gapful charge (gapless spin)

excitations is induced at each edge, while the

bulk behaves as a correlated band insulator.

Although the single particle excitation spec-

trum is gapped at edges, degeneracy in the

entanglement spectrum is maintained, giving

rise to gapless edge modes in the spin exci-

tation spectrum (Fig. 1(d)). Furthermore,

the analysis with the entanglement spectrum
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(not shown here [21]) elucidates the above-

mentioned fragility of edge states upon intro-

duction of U .

Summarizing the results obtained for the

correlated SSH model with J = 0, we have

a topological Mott insulating phase where the

bulk is always in a correlated TI insulator char-

acterized by the Chern number Nc = 1, while

the edge state is changed from a gapless elec-

tron mode to a topological edge Mott mode

having gapful charge (gapless spin) excitations.

We believe that this gives the first unambigu-

ous example of topological Mott insulators.

(b) Topological phase transition

We now consider a topological Mott transi-

tion, which is a new type of topological phase

transition characterized by zeros of the single-

particle Green’s function and a gap closing in

the spin excitation spectrum [21]. To address

this problem, let us switch on the exchange

interaction J in the Hamiltonian (1), which

can induce an intriguing phenomenon never

observed in free fermion systems. If the in-

teraction is ferromagnetic, a topological transi-

tion is induced by correlation effects; for exam-

ple, for J = −1.5, the winding number changes

from N1 = 0 to N1 = 1 with increasing the in-

teraction U , as shown in Fig. 2(a). Therefore,
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Figure 2: Left panel: Winding number for

(J, V ) = (−1.5,−1.6) and L = 11 as a func-

tion of U [21]. Right panel: locus of the

Green’s function Gab. As the momentum k is

increased, Gab(k) draws its locus clockwise. In

a trivial phase, at k = kmin, Gab(k) is positive

and real and draws its locus clockwise.

the trivial insulator changes into a nontrivial

one. In contrast to the non-interacting case,

the topological properties are changed without

a gap closing; as seen in the right panel of Fig.

3, the single particle excitation gap remains fi-

nite even at the transition point. Thus, zeros of

Green’s function are required at this point. In-

deed we can see that a zero appears at the tran-

sition point (right panel of Fig. 2); at U = 0, a

locus of the Green’s function G(iω = 0, k) does

not wind the origin, but as the interaction U is

increased, the locus approaches the origin and

finally crosses it.
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Figure 3: Left panel: Plots of lowest five

entanglement spectra as functions of U un-

der periodic boundary conditions for (J, V ) =

(−1.5,−1.6) [21]. Right panel: Plots of spec-

tral gap for the same parameters; single parti-

cle excitation (spin excitation) is denoted as Δc

(Δs). These values are extrapolated to ther-

modynamic limit with scaling L−1

The above-mentioned topological properties

are confirmed by the entanglement spectrum.

Namely, topological properties described by

the winding number are also characterized by

the structure of the entanglement spectrum.

We can observe in Fig. 3 that the entangle-

ment spectrum becomes degenerate for 3.2 <

U . Note that a change in the degeneracy of the

entanglement spectrum requires a gap closing

at the transition point, although the single par-

ticle gap remains finite at this point. There-

fore, the only way to satisfy the condition for

this topological Mott transition is to close a

gap in a collective excitation spectrum, which

corresponds to the spin excitation spectrum in
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our case. Therefore, we generally expect that a

collective excitation spectrum becomes gapless

at the topological Mott transition point where

the Green’s function has zeros.

3 Temperature-induced topo-

logical properties in 2D

We now investigate how topologically non-

trivial phases evolve at finite temperatures.

Specifically, we study a Kane-Mele Kondo lat-

tice shown below at finite temperatures with

dynamical mean field theory (DMFT) [22]. We

find an intriguing phenomenon: restoration of

topological properties at finite temperatures,

which is caused by the interplay between topol-

ogy and correlation. These phenomena are un-

covered by analyzing the bulk as well as edge

properties: in the bulk, the spin-Hall conduc-

tivity which is almost zero around zero tem-

perature increases with increasing tempera-

ture, while at the edge, the gapless edge modes

emerge with increasing temperature. We thus

elucidate that the interplay of the topological

nature of the system and the Kondo effect is es-

sential for the restoration of topological prop-

erties.

In order to demonstrate the above-

mentioned phenomena explicitly, we here

employ a topological Kane-Mele Kondo model

on a two-dimensional (2D) honeycomb lattice.

The Hamiltonian reads

HKMK = HKM + J
∑
i

si · Si,

HKM = −t
∑
〈i,j〉σ

c†i,σcj,σ

+itso
∑
〈〈i,j〉〉

sgn(i, j)sgn(σ)c†i,σcj,σ, (2)

with si = 1
2c

†
i,sσs,s′ci,s′ and sgn(σ) = 1 (−1)

for σ =↑ (↓). Here c†i,s creates an electron

with spin s =↑, ↓ at site i. Si denotes a lo-

calized moment of spin S = 1/2 at site i on

the honeycomb lattice. The effect of spin-orbit

coupling is incorporated in sgn(i, j), which

takes 1 (−1) when the electron hops clockwise

(counter clockwise), respectively.

At J = 0, conduction electrons on the Kane-

Mele lattice are completely decoupled from lo-

calized spins, and therefore the conductivity

takes a finite quantized value at zero temper-

ature, which is proportional to the topological

invariant. At finite temperatures, it takes a fi-

nite but not quantized value. Nevertheless, if

the temperature is smaller than the bulk gap,

we have a spin-Hall conductivity close to the

quantized value. This temperature region is re-

garded as a ”topological insulator region” ap-

proximately, although the quantization is not

well defined at finite temperatures.
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Figure 4: Phase diagram of temperature (T )

vs. the antiferromagnetic coupling (J) [22]. A

first order transition (solid orange line) is ob-

served in the weak-coupling region while it be-

comes second order (dashed green line) with

increasing J . For J < 0.683t a topological

antiferromagnetic phase (AFTI) is stabilized.

This phase changes to a trivial antiferromag-

netic phase and an ordinary Kondo insulator

with increasing J . The topological structure is

well-defined only at zero temperature.

Before addressing the topological properties,

let us briefly summarize the obtained phase di-

agram shown in Fig. 4. For weak exchange in-

teraction J , there is an antiferromagnetic topo-

logical phase, which is induced by the RKKY

interaction. With increasing J , this phase
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changes to a trivial antiferromagnetic phase.

Further increase in J stabilizes an ordinary

(trivial) Kondo insulator. When the tempera-

ture increases, the antiferromagnetic order dis-

appears via a first (second) order transition

for weak (strong) interaction strength J . We

find that the system shows the topologically

nontrivial properties for J < 0.683t, while the

increase in J induces a topological transition.

At this continuous topological transition point,

gap-closing in the density of states is observed.

In the following, we reveal that the interplay

between electron correlations and topological

properties leads to an intriguing crossover be-

havior; topological properties are restored at

finite temperatures in the region where the

topological structure of the ground state is de-

stroyed. We confirm these intriguing proper-

ties in the following two steps: we start with

the nonmagnetic phase then move to the anti-

ferromagnetic phase.

In order to capture the essence, let us

first restrict ourselves to paramagnetic solu-

tions. The calculated conductivity is plotted

in Fig. 5(a). At low temperatures, the spin-

Hall conductivity is zero for J = 0.5t since the

topological invariant is no longer well-defined

due to the Kondo effect; the singlet formation

between electrons and localized spins leads to

zeros of the Green’s function (i.e., divergence

of the self-energy) [see Fig. 5(b)]. With in-

creasing temperature, the Kondo effect is sup-

pressed, and the conductivity increases. For

T > 0.03t, the conductivity approaches the

values of J = 0 which are almost quantized.

The increase of the spin-Hall conductivity is

also observed for J = 0.7t, even though in-

creasing the coupling strength J suppresses the

conductivity at finite temperatures due to en-

hancement of the Kondo effect.

This increase of the conductivity is inter-

preted as a restoration of gapless edge modes.

Our real-space dynamical mean-field theory

(R-DMFT) calculations using the ribbon ge-

ometry reveal how finite temperatures affect
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Figure 5: (a): Spin-Hall conductivity at finite

temperatures. (b) ((c)): Self-energy of up-spin

state in the paramagnetic (antiferromagnetic)

phase [22]. For tso = 0, the spin-Hall con-

ductivity is zero even in the high temperature

region.

the edge modes. From the results (not shown

here [22]), we can see that edge modes are de-

stroyed due to the Kondo effect at low temper-

atures, but are restored with increasing tem-

perature, leading to an increase of the spin-

Hall conductivity.

Therefore, we conclude that the origin of this

crossover is the competition of the Kondo effect

and the topological properties. In the low tem-

perature region, the Kondo effect governs the

low energy properties and destroys the topo-

logical structure. On the other hand, topolog-

ical properties (i.e., the conductivity and edge

states) are restored if the temperature is higher

than the Kondo temperature but smaller than

the energy scale of the band gap of the non-

interacting topological insulator.

It should be noted that the restoration of

topological properties occurs even in the anti-
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tiferromagnetic transition points.

ferromagnetic phase; the increase of the spin-

Hall conductivity is observed in the antiferro-

magnetic phase. The conductivity in the anti-

ferromagnetic phase is shown as a function of

T in Fig. 6. At J = 0.75t, where the ground

state is topologically trivial, the spin-Hall con-

ductivity vanishes at zero temperature, but

increases with increasing temperature. Note

that the ground state is an antiferromagnetic

topological phase for J < 0.683. As seen in

Fig. 5(c), the magnetic order removes the pole

of the self-energy, and the ground state pos-

sesses nontrivial properties. This leads to a

dip structure in the temperature dependence of

the conductivity for J = 0.5t; with decreasing

temperature the Kondo effect firstly decreases

the conductivity for 0.021t < T < 0.03t,

but with entering the antiferromagnetic phase

(T < 0.021t), the conductivity increases again

because the ground state is the antiferromag-

netic topological insulator.

Summarizing this section, we have observed

an intriguing crossover behavior due to the in-

terplay between electron correlations and topo-

logical properties. At low temperatures, the

Kondo effect destroys the topological struc-

ture. However, the topological properties are

restored if the temperature is higher than the

Kondo temperature but smaller than the band

gap of the topological insulator. The restora-

tion of topological properties can be observed

in the bulk and the edge. The spin-Hall con-

ductivity rapidly increases even if it is almost

zero at low temperatures. Edge modes, de-

stroyed by the Kondo effect in the low tem-

perature region, appear with increasing tem-

peratures. The crossover behavior is observed

in both of the paramagnetic and the antiferro-

magnetic phases.

4 Related issues

We have also studied some interesting issues

related to topological phases, which we briefly

summarize below.

(a) Topological phase transitions in periodi-

cally driven systems [23, 24]: Recently, con-

cepts of topological phases of matter have been

extended to nonequilibrium systems. In par-

ticular, periodically driven systems described

by Floquet theory have been a topic of in-

tensive studies. We propose a model which

shows non-equilibrium topological phase tran-

sitions in cold-atomic systems. Namely, we

demonstrate that the Rabi oscillation plays

an important role to tune the band structure

in fermionic optical lattices, driving a non-

equilibrium topological phase transitions from

the trivial insulator to a time-reversal symmet-

ric (Z2) TI.

(b) Hidden topological properties of quantum

walks[25]: Quantum walks provide a unique

platform to realize Floquet TIs in a nonequilib-

rium systems driven by a time-periodic field.

So-called discrete quantum walks consists of

two operators, i.e. shift and coin operators,

which respectively play a similar role of par-

ticle hopping and spin-rotation due to spin-

orbit coupling. We can thus realize various

topological phases in quantum walks for cold

atomic systems, photonic systems, etc. We
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here obtain the phase diagrams of the topo-

logical numbers for the 1D discrete quantum

walks. This accounts for a hidden topologi-

cal phase of the 1D photonic quantum walk

studied in recent experiments, in which edge

states were observed, even though the param-

eter space was considered to be topologically

trivial.

(c) Topological properties of quasiperiodic cor-

related systems [26]: We analyze a quasiperi-

odic Bose lattice system in 1D, which we call

Harper-like Bose-Hubbard model. We com-

pute the Chern number and observe a gap clos-

ing behavior as the Hubbard interaction U is

changed. Also, we discuss the bulk-edge corre-

spondence in the system. Furthermore, we ex-

plore the phase diagram as a function of U and

a continuous deformation parameter between

the Harper-like model and another important

quasiperiodic lattice, the Fibonacci model. We

numerically confirm that the incommensurate

charge density wave (ICDW) phase is topolog-

ically non-trivial and it is topologically equiv-

alent in the whole ICDW region

5 Summary

We have reported our recent studies on corre-

lated TIs and some related topics. We have

established the emergence of 1D topological

Mott insulator, which is accompanied by edge

Mott states carrying only spin currents. This

was done by applying the DMRG method to

the calculation of the winding number as well

as the entanglement spectrum. We have also

shown an intriguing topological phase transi-

tion from a trivial to nontrivial phase, which

is characterized by zeros of Green’s function.

We have addressed a similar question for

two-dimensional TIs by using a DMFT ap-

proach. As a typical example of correlated

topological phase in two dimensions, we have

considered a Kane-Mele Kondo lattice model,

where the Kondo effect becomes dominant,

leading to a topologically trivial singlet ground

state. However, a remarkable phenomenon

is induced by temperature effects, reflecting

strong competition between topology and cor-

relation, i.e. topological properties are re-

stored by raising the temperature. We have

confirmed that this kind of temperature in-

duced topological properties are not specific to

the present model, but applicable more gener-

ically to correlated TIs [27].

We have also summarized some other topics

related to topological phases, which we stud-

ied recently. This includes laser-induced TIs

in nonequilibrium conditions, hidden topolog-

ical properties in quantum walks, and topo-

logical properties of correlated quasi-periodic

systems.

This work was partly supported by a Grand-

in-Aid for Scientific Research on Innovative

Areas (KAKENHI Grant No. 15H05855) and

also KAKENHI (No.25400366). This report is

based on the recent studies done in collabora-

tion with T. Yoshida, R. Peters, S. Fujimoto,

M. Nakagawa, F. Matsuda and M. Tezuka.

References

[1] C. L. Kane and E. J. Mele, Phys. Rev.

Lett. 95 146802 (2005).

[2] B. A. Bernevig, T. L. Hughes, and S. C.

Zhang, Science 314 1757 (2006).

[3] M. König, S. Wiedmann, C. Brüne, A
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[9] B. Yan, L. Müchler, X.-L. Qi, S.-C.

Zhang, and C. Felser, Phys. Rev. B 85,

165125 (2012).

[10] M. Dzero, K. Sun, V. Galitski, P. Cole-

man: Phys. Rev. Lett. 104 (2010) 10.

[11] M.-T. Tran, T. Takimoto, and K.-S. Kim:

Phys. Rev. B85 (2012) 125128.

[12] S. Raghu, Xl. L. Qi, C. Henerkampp, and

S. C. Zhang, Phys. Rev. Lett. 100 (2008)

156401.

[13] Y. Zhang, Y. Rau, and A. Vishwanath,

Phys. Rev. B79 245331 (2009).

[14] M. Kurita, Y. Yamaji, and M. Imada, J.

Phys. Soc. Jpn. 80 044708 (2011).

[15] M. Hohenadler, T. C. Lang, and F. F. As-

saad, Phys. Rev. Lett. 109 (2012) 229902.

[16] D. A. Pesin and L. Balents, Nature

Physics 6 (2010) 376.

[17] Y. Yamaji and M. Imada, Phys. Rev.

B83, 205122 (2011).

[18] T. Yoshida, S. Fujimoto and N.

Kawakami: Phys. Rev. B85 (2012)

125113; B87 (2013) 085134; B87 (2013)

165109.

[19] Y. Tada, R. Peters, M. Oshikawa, A.

Koga, N. Kawakami and S. Fujimoto:

Phys. Rev. B85 (2012) 165138.

[20] See for a review, M. Hohenadler, F. F.

Assaad, J. Phys.: Condens. Matter 25,

143201 (2013) and references therein.

[21] T. Yoshida, R. Peters, S. Fujimoto and N.

Kawakami: Phys. Rev. Lett. 112 (2014)

196404.

[22] T. Yoshida, R. Peters and N. Kawakami:

Phy. Rev. B93 (2016) 045138.

[23] M. Nakagawa and N. Kawakami: Phys.

Rev. A89 (2014) 013627.

[24] M. Nakagawa and N.Kawakami, Phys.

Rev. Lett. 115 (2015) 165303.

[25] H. Obuse, J. K. Asboth, Y. Nishimura and

N. Kawakami: Phys. Rev. B92 (2015)

045424.

[26] F. Matsuda, M. Tezuka and N. Kawakami:

J. Phys. Soc. Jpn. 83 (2014) 083707.

[27] T.Yoshida and N. Kawakami:

arXiv:1604.00122.

Activity Report 2015 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

34


