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Abstract

I discuss the grand challenges in first-principles

material simulation and briefly review two of

our trials to solve them. The first one is the

development of the transcorrelated method, a

correlated wave function theory applicabl to

condensed matter. The second one is a general

scheme for calculating lattice thermal conduc-

tivity.

1 Introduction

First-principles electronic structure calculation

based on the density functional theory (DFT)

is widely used not only in the analysis of mate-

rial structure and its electronic state but also

for theoretical prediction of material proper-

ties. As the scope of its application expands,

however, we find there are many problems still

remaining.

Firstly, accuracy and reliability of total en-

ergy and energy spectrum obtained by the

present DFT are sometimes insufficient for the

research of strongly correlated electronic sys-

tems, spin states or magnetic orders, optical

properties, structure of molecular crystals and

so on. Although there have been reported

various succesful attemps such as combination

of DFT, downfolding techniques and accurate

simulation of simplified model Hamiltonian for

low-energy electrons, first-principles method,

which is general in the sense of DFT, is still

missing.

Secondly, calculable system size is quite lim-

ited despite advances in massively parallel su-

percomputers. This is because the computa-

tional cost of DFT essentially scales as order

N3 with N being the number of atoms. So-

called order-N methods have been developed

for large-scale structural simulations, but cal-

culation of the energy spectrum needs addi-

tional process with high calculation load.

Thridly, researh on non-equilibrium dy-

namics often needs large-scale and long-time

dynamical simulation, or otherwise requires

some ingenuity. Chemical reaction, thermal

transport and structure formation like crystal

growth are such examples.

Finally, prediction of material structure is a

very important challenge considering increas-

ing importance of computer simulations in new

material development. Recent activities on

materials informatics have further increase its

importance.

For years, we have developed various meth-

ods with collaborators to tackle the prob-

lems mentioned above. In this article, I

briefly review two important methods among

them. The developments were mainly done

by Masayuki Ochi (Section 2) and Terumasa

Tadano (Section 3).
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2 Wave-function theory for

condensed matter

Wave function theory (WFT) is not often

applied to first-principles calculation of con-

densed matter, since the Hartree-Fock (HF)

method, virtually the only available method

except for quantum Monte Carlo methods,

fails to describe finite density of states at

the Fermi level of metals and seriously over-

estimates the band gap of semiconductors.

WFT-based approaches are, however, system-

atically improvable and this is a great ad-

vantage against the density functional theory

(DFT). Therefore some groups have been re-

visiting WFT to go beyond the present DFT

calculation.

The transcorrelated (TC) method first de-

veloped by S.F. Boys and N.C. Handy [1, 2]

is a unique approach to correlated electrons

with Slater-Jastrow-type many-body wave-

functions. In TC, by using similarity trans-

formation of the Hamiltonian with the Jas-

trow factor, HF-like self-consistent-field (SCF)

equations called TC-SCF equations are derived

for one-electron wave functions in the Slater

determinant together with their orbital ener-

gies, which are very helpful for intuitive un-

derstanding of the electronic state of matter.

Thus we have so far developed the TC method

for periodic systems [3, 4, 5, 6, 7, 8, 9, 10, 11].

In the TC method, a many-body wavefunc-

tion of the system Ψ is formally factorized as

Ψ = FΦ. F = exp(−
∑

i,j(̸=1) u(xi, xj)) is a

Jatrow factor representing two-body electron

correlation and Φ is defined as Φ = Ψ/F .

The eigenstate equation for the total Hamil-

tonian H, HΨ = EΨ leads HTCΦ = EΦ with

HTC ≡ F−1HF . Note that this is just a sim-

ilarity transformation and mathematically ex-

act. The Jastrow factor has been widely used

in the variational Monte Carlo method for cor-

related electrons with variations of the Jas-

trow function u(x, x′). In our study we usually

adopt a simple form:

u(x, x′) =
A

|r− r′|

{
1− exp

(
−|r− r′|

Cσ,σ′

)}
, (1)

A =

√
V

4πN
×
√
1− 1

ε
, (2)

Cσ,σ′ =
√
2A(σ = σ′),

√
A(σ ̸= σ′), (3)

where V and N are the volume of the cell and

the number of electrons, respectively, and ε is

the static dielectric constant. Improvement of

u is discussed in Ref.[7]. The transcorrelated

Hamiltonian HTC is a non-Hermitian and con-

tains effective two-body and three-body inter-

actions.

Then we use the HF approximation and

adopt a single Slater determinant of one-

electron wavefunction ϕi(r) (i = 1−N) for the

manybody function Φ. The TC-SCF equation

for ϕi(r) is similar to the HF-SCF equation,

with which ϕi(r) in the Slater determinant can

be optimized for the Jastrow function F :(
−1

2
∇2

1 + vext(x1)

)
ϕi(x1)

+
N∑
j=1

∫
dx2ϕ

∗
j (x2)v2body(x1, x2)

×det[ϕi(x1), ϕj(x2)]

−1

2

N∑
j=1

N∑
k=1

∫
dx2dx3ϕ

∗
j (x2)ϕ

∗
k(x3)

×v3body(x1, x2, x3)

×det[ϕi(x1), ϕj(x2)ϕk(x3)] =
N∑
j=1

ϵijϕj(x1). (4)

Here vext(x1) is the external potenial from nu-

clei or pseudopotentials. v2body and v3body are

effective two-body and three-body potentials

derived from the Jastrow function u:

v2body(x1, x2) =
1

|r1 − r2|

+
1

2

2∑
i=1

[∇2
iu(x1, x2)− (∇iu(x1, x2))

2

+2∇iu(x1, x2) · ∇i], (5)

v3body(x1, x2, x3)

= ∇1u(x1, x2) · ∇1u(x1, x3)
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+∇2u(x2, x1) · ∇2u(x2, x3)

+∇3u(x3, x1) · ∇3u(x3, x2). (6)

The orbital energy matrix ϵij can be made tri-

angular (by orbital orthogonalization) or di-

agonal (by biorthogonal formulation), when

Koopmans’ theorem holds for the diagonal el-

ements. Since HTC preserves the crystal sym-

metry of the original Hamiltonian H, we can

obtain band structure of the crystal with tak-

ing account of the electron correlation through

F .

To solve the TC-SCF equation and to calcu-

late the total energy, we need to evaluate three-

body integrals for v3body. Since each term of

v3body is a product of two-body functions, com-

putational cost for the three-body integrals can

be reduced to the order of two-body integrals

in the HF method [6]. Thanks to this algo-

rithm, computational cost of the TC method

has come to be within the reach of supercom-

puters or PC clusters.

So far we have shown that the TC method

is actually a good and alternative approach to

condensed matter: it is applicable to metals

in principle [3], much improves the HF band

structure of semiconductors [4, 6, 7], and is

compatible with post-HF methods such as the

configuration interaction method for calculat-

ing photo-excitation spectrum including the

excitonic effect [5, 8] and also Møller-Plesset

perturbation theory [9]).

Very recently, we have developed a new it-

erative scheme to solve the TC-SCF equations

to further reduce the comutational cost and

memory [10], which enabled us to apply the

TC method with biorthogonal formalism to a

transition metal oxide ZnO for the first time.

Calculated band gap, valence band width and

position of the narrow 3d band were in better

agreement with experimental data than sev-

eral other conventional methods including the

G0W0 method (see Table 1) [11].

3 Anharmonic phonons and

lattice thermal conductivity

Lattice thermal conductivity is a key param-

eter in the figure of merit for thermoelectric

materials. It is also important from the view-

point of device technology, since thermal man-

agement is necessary to avoid thermal break-

down of nano-scale devices. Therefore, it is

highly desirable for material and device devel-

opment to calculate it from first principles.

Lattice thermal conductivity can be evalu-

ated by molecular dynamic simulation (MD)

with Kubo formula, non-equilibrium MD with

Fourier’s law, or by Boltzman transport equa-

tion (BTE) usually with the single-mode

relaxation-time approximation (RTA). MD

needs large simulation cell comparable with

phonon-scattering length and long-time simu-

lation corresponding to the relaxation time of

phonons. Since the phonon-scattering length

and the relaxation time can reach 10−9s and

10−6m, respectively, in some cases, it is diffi-

cult to use first-principles MD except for mate-

rials with low thermal conducltivity or at high

temperature [21]. It should also be noted that

we cannot easily check and assure the appro-

priateness of the calculation condition of MD.

On the other hand, by BTE with the single-

mode RTA, the lattice thermal conductivity

can be accurately estimated by the following

formula:

κµ,νL (T ) =
1

ΩN

∑
q,µ

cq(T )v
µ
qv

ν
qτq(T ). (7)

Here, Ω is the volume of the unit cell, cq, vq
and τq are the constant-volume specific heat,

the group velocity, and the relaxation time of

phonons with wave vector q, respectively. N is

the mumber of q points. The relaxation time

τq = [2Γq(ωq)]
−1 can be calculated by

Γq(ω) =
π

2N

∑
q′,q′′

h̄|Φ(−q,q′,q′′)|2

8ωqωq′ωq′′

×[(nq′ + nq′′ + 1)δ(ω − ωq′ − ωq′)

−2(nq′ − nq′′)δ(ω − ωq′ + ωq′)], (8)
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Table 1: Characteristic values in the band structure of ZnO obtained by various first-principles

methods and experiments. All values are in eV. (Ref.[11])

Band gap O2p bottom Zn3d average/bottom

LDA 0.7 · · · · · · /− 5.8

HSE03a 2.1 −4.9 · · · /− 6.5

G0W0 (LDA)b 2.4 −5.2 · · · /− 6.5

G0W0 (HSE03) 3.2a, 3.46c · · · −6.21c/− 7.2a

AFQMCd 3.26(16) · · · · · ·
VMCe 3.8(2) · · · · · ·
HF 11.4 −5.7 −9.1/− 9.9

Biorthogonal TC 3.1 −5.1 −9.3/− 9.7

Expt. 3.4f −5.3f ,−5.2g −7.5c,h,−8.6i,−8.81g/–

aRef.[12], bRef.[13], cRef.[14], dRef.[15], eRef.[16], fRef.[17], gRef.[18], hRef.[19], iRef.[20].

where the three-phonon scattering matrix el-

ement Φ(−q,q′,q′′) is calculated from third-

order force constants in the potential energy

function of atoms. As the third-order force

constants are considered to be short-range,

they can be calculated with a periodic cell

containing relatively small number of atoms.

Although we need to use many q-points in

eq.(8), we can easily check the convergence of

calculation in the BTE-RTA approach. An-

other advantage of the BTE-RTA approach is

that, once we know Φ(−q,q′,q′′), tempera-

ture dependence of the thermal conductivity

is easily obtained from the same Φ(−q,q′,q′′).

Furthermore mode-dependent analysis of the

phonon relaxation can be easily done by eq.(8).

These are the reason we often use the BTE-

RTA approach instead of MD.

To get anharmonic force constants we devel-

oped a general and efficient method based on a

first-principles molecular dynamics simulation:

the simulation cell typically contains a few tens

of atoms and the simulation time is of the or-

der of 10−12s. The third-order force constants

derived from the simulation were then used for

calculation of the lattice thermal conductivity

of various materials (see Fig. 1)[22, 23, 24]. It

should be noted that a wide range of lattice

thermal conductivity including the tempera-

ture dependence is accurately calculated with

the present scheme.

The calculation of SrTiO3 shown in Fig. 1

is a special case to be mentioned. SrTiO3 ex-

hibits phase transformation at 105 K and has

cubic symmetry above the transition temper-

ature. Frequencies of some phonon modes are

calculad to be imaginary with the cubic struc-

ture, showing that the cubic phase is not sta-

ble statically and has highly anharmonic po-

tential energy surface. In this case we cannot

use eqs.(7)-(8) as they are. Thus we intro-

duced the self-consistent-phonon (SCPH) ap-

proach to calculate phonon frequencies real-

ized by thermal fluctuation. With the method,

we succeeded in quantitative calculation of

temperature-dependent real phonon frequen-

cies as observed in experiments, and with these

frequencies, we obtained the lattice thermal

conductivity of SrTiO3 in Fig. 1, which agreed

well with experiments [24, 25].

The simulation software named ALAMODE

developed by T. Tadano is published as an

open source software [26].
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Figure 1: Temperature dependence of the lattice thermal conductivity of various materi-

als obtained by simulation withom BTE-RTA (lines) and by experiments (symbols). (See

Refs.[22,23,24] and references therein.)

4 Summary

Supported by rapidly advancing computers,

first-principles material simulation is nowadays

an indispensable tool for material science. As

the simulation extends its application, how-

ever, we have come to face with its limita-

tions and challenges. After summarizing the

challenges in four direction in the introduc-

tion, I reviewed two of our trials to solve some

of the challenges. Firstly I reviewed the idea

and recent development of the transcorrelated

method. It is the wave function theory for cor-

related electronic systems, which enables us to

calculte not only the total energy but also the

electronic energy spectrum accurately. Sec-

ondly I reviewed the method to calculate lat-

tice thermal conductivity. It is general, accu-

rate and applicable to even a high-symmetry

crystal realized by thermal fluctuation at high

tempetature. Itroduction of the SCPH ap-

proach further expands the scope of its appli-

cation.
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