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Abstract

In two-dimensional frustrated Heisenberg spin

systems, a topological defect, so called Z2-

vortex, often appears as an elemental excita-

tion from magnetically ordered non-collinear

ground states. In this paper, we investigate

a possible topological phase transition driven

by binding-unbinding of Z2-vortices, the Z2-

vortex transition by means of massively paral-

lel Monte Carlo simulations. In order to avoid

the failure of global update Monte Carlo sim-

ulations in frustrated spin systems, we con-

sider an effective model of the Z2 vortex transi-

tion, where SO(3) matrices ferromagnetically

interact each other on the L × L square lat-

tice. We calculate an order parameter, the

vorticity modulus, up to L = 16384. By ex-

trapolating the data into the thermodynamic

limit, we estimate the upper bound of the tran-

sition temperature as T/J ≃ 0.27. On the

other hand, the spin correlation length at this

temperature is estimated at least 20000 lat-

tice spacings. Because the present system is

limited L = 16384, we need further careful

analysis to conclude the existence of the finite-

temperature topological phase transition.

∗Present address: Department of Physics, Univer-

sity of Tokyo, Bunkyo-ku, Tokyo 113-0033.

1 Introduction

Recently, frustrated magnets have attracted

much interest [1–4]. Frustrated interactions of-

ten introduce two kinds of interesting features

to spin systems. Firstly, in several frustrated

systems, the classical ground states are macro-

scopically degenerated due to the competitions

of interactions. These systems do not develop

magnetic long-range order even at zero tem-

perature. They have been considered to reveal

possible quantum spin liquids as their ground

state if we introduce strong quantum fluctua-

tion typically appeared in the case of S = 1/2.

Typical examples of such macroscopically de-

generated ground state can be seen in the two

dimensional kagomé lattice or in the three di-

mensional pyrochlore lattice.

Secondly, even if frustrated spin systems

have magnetically ordered ground state, spins

often cant from each other forming non-

coplaner or non-collinear. A typical example

showing non-collinear structure is the triangu-

lar lattice antiferromagnetic Heisenberg model.

The ground state of the model is so called 120-

degree structure where spins cant 120 degrees

each other (see Fig. 1(a)). Such kind of canted

structures often introduce novel phenomena to

frustrated spin systems.

In two-dimensional frustrated Heisenberg

spin systems with non-collinear ground state,

a topologically stable point defect, Z2 vortex,

often plays an important role in their ordering.
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Figure 1: (a)Schematic view of 120-degree

structure on the triangular lattice. (b) A lo-

cal 120 degree structure together with the vec-

tor chirality κ ∝ S⃗1 × S2 perpendicular to the

plane. (c) A local SO(3) vectors a⃗, b⃗, and c⃗

defined from a local 120-degree structure.

A possible topological phase transition driven

by binding-unbinding of the Z2 vortices was

proposed by Kawamura and Miyashita about

30 years ago [5]. In this Z2-vortex transi-

tion, the spin correlation length keeps finite.

At the Z2-vortex transition temperature Tv,

only the vortex correlation length character-

izing the typical separation of the free vor-

tices diverges. This is a sharp contrast to the

case of the Berezinskii ‒ Kosterlitz ‒ Thou-

less (BKT) transition in two dimensional XY

spin systems, where the spin correlation length

diverges together with the vortex correlation

length below the transition temperature [6, 7].

The nature of the possible Z2-vortex tran-

sition has been investigated typically on the

triangular-lattice Heisenberg antiferromagnet

[5, 8–10]. Recent Monte Carlo (MC) simula-

tion up to L = 1536 suggested the occurrence

of Z2-vortex transition at a finite temperature

Tv/J ≃ 0.285 with a finite spin-correlation

length ξ ≃ 2000 [8]. However, the existence

of topological phase transition has not been

fully resolved because the estimated spin cor-

relation length at Tv is larger than the maxi-

mum system size L = 1536. In order to clar-

ify the true nature of the Z2-vortex transi-

tion, we need larger systems beyond the spin-

correlation length at the transition tempera-

ture.

However the increase of the system sizes is

not so easy because the cluster update MC

techniques such as Swendsen-Wang and Wolff

algorithms [11, 12] do not work efficiently in

the case of frustrated spin systems. By using

local update, typically we suffered from critical

slowing down which means the relaxation time

behaves as

τ ∝ Lz, (1)

where z is usually z ≥ 2. Thus, if we increase

the systems size by twice as L′ = 2L, we at

least need four times long MC steps than that

of L in order to obtain sufficient statistics. In

addition, we also need to cover the increase of

computational cost par unit MC step which is

usually proportional to L2 in the case of two-

dimensional systems.

In order to overcome these difficulties, we

consider the following strategy. First, we

change the model from original frustrated tri-

angular lattice model to a low temperature

effective model where we consider SO(3) ro-

tational matrices as elemental degree of free-

doms. As we see in the followings, in this ef-

fective model the SO(3) matrices interact each

other ferromagnetically and their is no explicit

frustration. Thus we can introduce a cluster

algorithm which seems to work well at least

for smaller system [13, 14]. Second, in order

to cover the increase of computational costs,

we introduce MPI parallelization of a cluster

MC algorithm based on the real space divi-

sion. Note that in contrast to the local update

MC, we need a global communication to deter-

mine the cluster structure in the case of global

update.

By combining these two techniques, we per-

form massively parallel MC simulations for the

system sizes up to L = 16384, which is ten

times larger than the previous numerical sim-

ulations. It turns out that if we assume the ex-

istence of phase transition, the transition tem-

perature Tv is estimated to be actually finite
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by using finite size scaling. On the other hand,

the spin correlation length at the estimated

Tv is larger than the maximum system size

L = 16384. Thus we need further studies to

confirm the existence of Z2 vortex transition

without doubt.

The rest of the paper is organized as fol-

lows. In Sec. 2 we introduce an effective model

of the Z2-vortex transition. Then we describe

numerical methods to investigate the model in

Sec. 3. The main results are provided in Sec. 4.

Finally, we give concluding remarks and future

issues in Sec. 5.

2 Model

In order to investigate the possible Z2-vortex

transition, we consider an effective model

which describes low temperature properties of

several frustrated Heisenberg systems, e.g. the

triangular lattice antiferromagnet Heisenberg

model [14,15]. The Hamiltonian of the triangu-

lar lattice antiferromagnetic Heisenberg model

is given by

H = J
∑
⟨i,j⟩

S⃗i · S⃗j , (2)

where S⃗ = (Sx, Sy, Sz) is a three-component

unit-vector, J > 0, and
∑

⟨i,j⟩ means the sum

over the nearest-neighbor pairs on the triangu-

lar lattice.

The ground state of the model is the 120-

degree structure. Note that a “direction” of a

120-degree structure on a triangle can be char-

acterized by a SO(3) matrix. For example, we

construct three orthogonal unit vectors a⃗, b⃗,

and c⃗ as

a⃗ = S⃗1

c⃗ ∝ S⃗1 × S⃗2

b⃗ = c⃗× a⃗, (3)

(see Fig. 1(b,c)). Thus, a low-temperature ef-

fective model of the triangle lattice Heisenberg

model is given by

Heff = −
∑
⟨i,j⟩t

(
p1a⃗i · a⃗j + p1⃗bi · b⃗j + p3c⃗i · c⃗j

)
,

(4)

where a set of vectors (⃗ai, b⃗i, c⃗i) is located

at a upper triangle of the original triangu-

lar lattice and
∑

⟨i,j⟩t is the sum over the

nearest-neighbors on the coarse grained trian-

gular lattice formed by upper triangles. Note

that interaction coefficients p1 and p3 are non-

negative (ferromagnetic), and p3 is generally

different from p1 because c⃗ is perpendicular to

the original 120-degree structure, while a⃗ and

b⃗ are on the plane formed by the 120-degree

structure. In a previous study done by Kawa-

mura and Kikuchi, they used a model with

p3 = 0 [15]. Because the the model only has

ferromagnetic interactions, the underlying lat-

tice structure might be irrelevant to the nature

of the ordering. Thus, hereafter we consider

the model on the square lattice for the sim-

plicity.

By introducing a 3 × 3 matrix Ri as Ri =

(⃗ai, b⃗i, c⃗i), the Hamiltonian is transformed into

the form as

Heff = −
∑
⟨i,j⟩

Tr Rt
iPRj , (5)

where P is a diagonal matrix P =

diag (p1, p1, p3). From this notation, we can

see that the Hamiltonian is unchanged under

the transformation

R′
i = URiV, (6)

where U is a SO(3) rotational matrix and V

is a O(2) rotational matrix which mixes a⃗ and

b⃗. Thus, the effective model often called as

SO(3)×O(2) model. At the special parameter

p3 = p1 the model becomes SO(3) × SO(3)

symmetric, i.e., the Hamiltonian is unchanged

under the transformation (6) with both of U

and V are SO(3) matrices.

Because the effective model has Z2-vortices

as topological defects independent on the value

of p3, here we concentrate to the case p3 = p1.

Activity Report 2016 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

22



In this special case, the SO(3)× SO(3) model

can be mapped onto so called RP 3 model [14].

In the RP 3 model four-component unit vectors

S⃗i = (Si,0, Si,1, Si,2, Si,3), interact through the

ferromagnetic biquadratic interaction as

HRP 3 = −J̃
∑
⟨i,j⟩

(
S⃗i · S⃗j

)2
. (7)

The effective spin S⃗ is related to the matrix R

through the relation

Rkl = 2

(
SkSl −

1

4
δk,l

)
+ 2

3∑
m=1

ϵklmS0Sm

+ 2

(
S2
0 −

1

4

)
δkl. (8)

A general RPn−1 model defined as n-

component spin system interacting thorough

the biquadratic term has been investigated,

e.g., as a model for liquid crystals [13, 16–18].

In the case of n = 2, the model is equivalent to

the XY model and it exhibits the BKT tran-

sition on two-dimensional lattices. For n ≥ 3,

the two dimensional RPn−1 models have Z2-

vortex excitations and they could exhibit the

Z2-vortex transition, although no clear evi-

dence of the transition has been reported. In

the limit of n → ∞, the model is soluble:the

model exhibits a finite temperature first-order

phase transition [17].

3 Method

In order to investigate the RP 3 model on the

L × L square lattice, we perform MC simu-

lations. Because the Hamiltonian contains no

frustrated interactions, conventional cluster al-

gorithms are likely to work efficiently. Ac-

tually, Kunz and Zumbach have proposed a

Wolff-Swendsen-Wang type cluster algorithm

for general RPn−1 models [13] and Caffarel el

al., have extended it to SO(3) × O(2) model

[14]. In their algorithm, first we generate a

random (unit) vector e⃗ in O(n) space, and then

we calculate the projection of S⃗i onto the e⃗ as

σi = S⃗i · e⃗. Finally, we perform the Swendsen-

Wang cluster algorithm [11] by constructing

clusters defined through effective Ising vari-

ables σi.

Indeed, the Wolff-Swendsen-Wang algo-

rithm for the RPn−1 and the SO(3) × O(2)

models have worked efficiently at least for

smaller system sizes [13, 14]. On the other

hand, for systems of L = O(1000), we found

that the relaxation of Z2-vortex degree of free-

doms feel a kind of critical slowing down and

the total relaxation time scaled as τ ∝ Lz,

where z ≃ 2. Thus, for the present model the

cluster algorithm works not surprisingly well,

although it can largely reduce the relaxation

time from that of the local updates.

In order to investigate much larger sizes

than the previous simulations, we also im-

plemented MPI parallelization of the Wolff-

Swendsen-Wang algorithm. We split the two-

dimensional square lattice into M ×M cells,

and a MPI process is assigned to each cell (see

Fig. 2). In total, we have M2 MPI processes.

A MPI process store the information of spins in

its cell. Different from the local update meth-

ods, we need global communication to perform

the cluster algorithm. For this purpose, we

implemented a simple hierarchical communi-

cation, known as the butterfly type communi-

cation.

In Fig. 3, we show benchmark results of our

code performed at the K computer and the pre-

vious ISSP super computer, Kashiwa. We per-

formed the benchmark up to 16384 MPI pro-

cesses (2048 nodes) at the K computer and up

to 1024 MPI processes (128 nodes) with the

flat MPI parallelization. Although the par-

allelization efficiency is lower than the ideal

scaling for large nodes, we can get sufficient

speed-up by using MPI parallelization. Based

on benchmark calculations, we performed the

product calculations e.g. of the largest size

L = 16384 on 512 node of the K computer.
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Rank1 Rank2

Rank3 Rank4

Figure 2: Schematic view of assignment of MPI

processes on the square lattice together with

a cluster determined by e.g. Wolff-Swendsen-

Wang algorithm. Because two sites on a cell

could be connected through the all other cells,

we need information of the whole system to

detect the cluster structure.

4 Results

By using parallel Wolff-Swendsen-Wang algo-

rithm, we performed MC simulation of the

RP 3 model on the square lattice up to L =

16384. The calculations have been performed

in the K computer and the system B in ISSP

University of Tokyo.

In Fig. 4, we show the vortex density nv for

various system sizes. We define vortices on ev-

ery elemental plaquet of the square lattice, and

nv is defined as the ratio between the num-

ber of vortices and the volume L2. The vortex

density does not show strong size dependence

and it rapidly varies around T/J̃ ≃ 0.28. In

the low temperature phase, the vortices ap-

pear only as pairs and the vortex density is

expected to be described by the thermal acti-

vation of such pairs. The inset of Fig. ?? shows

the semi-log plot of nv as a function of J̃/T .

For T ≳ 0.28J̃ , we see clear deviation from

the low-temperature behavior nv ∝ e−µ/T , in-

dicating at least something happens in the vor-

tex sector around T/J̃ ≃ 0.28. However, note
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Figure 3: Benchmark results of MPI paral-

lelized cluster MC method for RP 3 model.

The speed up is the inverse of elapsed time

normalized at 1, 1024, and 4096 MPI pro-

cesses for L = 4096, 8192, and 16384, respec-

tively. In this benchmark calculation, we in-

clude not only the MC updates but also cal-

culation of observable. The calculations per-

formed at the K computer and ISSP super

computer (Kashiwa) with flat MPI paralleliza-

tion.

that nv contains information from both of free

and paired vortices, while Z2-vortex transition

is governed by a binding-unbinding of free vor-

tices. At the phase transition, the density of

the free vortices becomes zero, while nv keeps

finite due to the contribution from paired vor-

tices. Thus, we need a proper order parameter

for Z2-vortex transition rather than nv.

In order to further clarify the existence of

Z2-vortex transition, here we investigate the

so called vorticity modulus as an order pa-

rameter of the topological phase transition

[10, 15]. The vorticity modulus is conceptu-

ally defined through the free energy deference

between the cases with and without a free vor-

tex [15]. The free energy difference V is ex-

pected to show logarithmic size dependence for

sufficiently large L as

V = C + v logL, (9)
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Figure 4: Temperature dependence of the vor-

tex density. Red arrows indicate the posi-

tion of T/J̃ = 0.28, where the vortex density

rapidly varies. The inset shows the vortex den-

sity in the semi-log plot as a function of 1/T .

and the coefficient v before logL is the vortic-

ity modulus. In the thermodynamic limit, the

vorticity modulus is equal to zero (v = 0) for

T > Tv and it is finite (v > 0) for T < Tv.

Thus we can determine the transition temper-

ature Tv through size and temperature depen-

dence of the vorticity modulus es.

In actual calculation, we assume a simple

vortex structure and calculate the free energy

difference at size L, V (L), through the fluctu-

ation in the equilibrium configurations under

the periodic boundary condition;it is similar

to the conventional calculation of the helicity

modulus [10]. Then, we extract the vorticity

modulus v by using V (L)s of two system sizes

L1 and L2 as

v(L1, L2) ≡
V (L1)− V (L2)

logL1/L2
. (10)

In Fig. 5, we plot thus obtained vorticity mod-

uluses for various sizes, where we set L2 =

L1/2. As we expect, for sufficiently high tem-

perature v ≃ 0, and for T ≲ 0.28J̃ , v > 0 .

We also see that as decreasing the tempera-

ture, v becomes negative sightly higher tem-

perature before v > 0. It might be a finite size

effect comes from e.g. the size dependence of

C term in Eq. (9). However, owing to this neg-

ative part, we can easily define a characteristic

temperature Tv(L) as the temperature where

v change the sign, which is expected to con-

verge to the true transition temperature Tv in

the thermodynamic limit.

L1=256
L1=512

L1=1024
L1=2048
L1=4096
L1=8192

L1=16384

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 0.26  0.28  0.3  0.32  0.34

Figure 5: Vorticity moduluses obtained by MC

simulations for 128 ≤ L ≤ 16384. The vortic-

ity modulus is calculated through Eq. (10) by

setting L2 = L1/2.

In Fig. 6, we plot the the characteristic tem-

perature Tv(L) as a function of the system size,

where we set L = (L1 + L2)/2. Because the

correlation length for vortices ξv, which could

be defined as characteristic separation length

of the free vortices, diverges exponentially at

Tv as

ξv ∝ exp

[
A

(T − Tv)α

]
(T > Tv), (11)

we expect that Tv(L) converges to Tv by loga-

rithmic form as

Tv(L) = Tv + a [log(L/L0)]
− 1

α (12)

[8]. In the previous MC simulation of the tri-

angular lattice antiferromagnetic Heisenberg
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model, α was estimated as α = 0.42 ± 0.15

[8]. The estimated α is not so different from

α = 0.5, which is the case of BKT transition.

Note that even if there is no Z2 vortex transi-

tion, Eqs. (11) and (12) are applicable by set-

ting Tv = 0 and α = 1 [19].

 0.25
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 0.27
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 0.29

 0.3

 0.31

 0  0.05  0.1  0.15  0.2  0.25

Figure 6: Extrapolation of characteristic tem-

perature Tv(L) to the thermodynamics limit.

Based on Eq. (12), we extrapolated the data

by assuming three kind of situations: (red)

(α = 0.5, L0 = 1), (blue) (α = 0.5), and

(black) (α = 1, Tv = 0).

Based on Eq. (12), we extrapolate Tv(L) to

the thermodynamic limit by assuming α = 0.5

or α = 0, which correspond to assuming finite

temperature Z2-vortex transition or no Z2-

vortex transition, respectively. In the former

case, we also try two extrapolations by fixing

L0 = 1 or freely change L0 because L0 = 1 was

used in the analysis of the triangular lattice an-

tiferromagnetic Heisenberg model [8]. The fit-

ting curves are also plotted in Fig. 6. The two

curves assuming α = 0.5 give Tv/J̃ ≃ 0.269

and Tv/J̃ ≃ 0.250 for fixed L0 = 1 and free L0

cases, respectively. There extrapolation indi-

cate that if we assume the existence of the Z2

vortex transition, indeed we obtain finite tran-

sition temperature. However, note that the fit-

ting curve obtained by assuming α = 1.0 and

Tv = 0.0 seems to be not bad except for the

largest size data. Unfortunately, the statisti-

cal error of the largest size is rather large and

it is difficult to exclude the possibility of no

phase transition from the present data set.

In addition, as we can see from the “spin”

correlation length1 plotted in Fig. 7, even at

the higher estimation of the transition tem-

perature, Tv/J̃ = 0.269, the correlation length

seems to be longer than the largest system size

of the present simulation, L = 16384. It means

that although we investigated the model ten

times larger than the previous simulations, the

situation remains unclear for persons skeptical

about the Z2-vortex transition because we can-

not ruled out the possibility of “fictitious or-

der” due to smaller systems sizes than the spin

correlation length. Thus, we probably need

much larger scale calculations to conclude the

existence of the Z2-vortex transition without

doubt. From the present data, we only con-

clude that the upper bound of the Z2-vortex

transition is Tv/J̃ = 0.27.

5 Conclusion

In this paper, we investigated the possi-

ble topological phase transition , the Z2-

vortex transition, in two-dimensional frus-

trated Heisenberg spin systems. The most

characteristic feature of the Z2-vortex tran-

sition is that the spin correlation length at

the phase transition keeps finite and only the

topological nature, existence of free vortices,

changes at the phase transition. In order to

clarify the existence of transition and to dis-

tinguish with a cross over by numerical sim-

ulations, we need to calculate larger systems

than the spin correlation length at the transi-

tion temperature. We attacked this challeng-

ing problem by investigating the RP 3 model

on the square lattice as an effective model for

the Z2-vortex transition.

1Here we define correlation length through the ferro

nematic correlation of S⃗i in RP 3 model, or equivalently

through the ferromagnetic correlation of a⃗, b⃗, or c⃗ in

SO(3)× SO(3) model.
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Figure 7: ”Spin” correlation length of RP 3

model for various system sizes. red and blue

arrows indicate the position of estimated Tvs,

Tv/J̃ ≃ 0.269 and Tv/J̃ ≃ 0.250, respectively.

By using massively parallel cluster MC simu-

lation, we successfully equilibrated the system

up to L = 16384. We extrapolated the char-

acteristic temperature to the thermodynamic

limit by assuming the scaling of the Z2-vortex

transition, and obtained an upper limit of the

transition temperature Tv/J̃ ≃ 0.27. However,

when we extrapolated the data by assuming

no phase transition, it also gave us satisfac-

tory fittings. In addition, the spin correlation

length at Tv seems to be clearly beyond the

maximum size L = 16384. These analysis in-

dicates that although we have performed ten

times larger size than the previous MC simu-

lation, it is still difficult to show the existence

of Z2-vortex transition without doubt.
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