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Abstract

We review recent advances in the Markov-

chain Monte Carlo method, especially the irre-

versible kernel and the O(N) method based on

the geometric allocation technique. After the

review of the MCMC, we present the results of

our recent Monte Carlo simulation of the Ising

model with long-range interaction as well as

the correlated random-field Ising model, both

of which exhibits critical behavior with non-

integer effective dimensions depending on the

decay exponent of the long-range interaction

or the spatial correlation of the random field.

1 Introduction

Critical phenomena are classified into “univer-

sality classes” according to their critical expo-

nents. In general, the critical exponents de-

pend on only a few basic properties of the sys-

tem, such as the dimensionality, symmetry of

the order parameter, etc. However, the exis-

tence of long-range interaction (LRI) and/or

randomness may change the critical behav-

ior [1]. Various materials exhibit nontrivial

phenomena, in which the long-range nature

of the interactions, such as the dipole-dipole

interaction and the RKKY interaction, plays

an essential role. The randomness also causes

various nontrivial behavior such as the spin-

glass transition, slow dynamics, etc [2]. As

for the critical behavior, they also alter the

universality class. Interestingly, this change of

universality can be interpreted as a continuous

change of the effective dimension of the system

as seen below.

If a spin system has LRI, all possible pairs

of spins interact with each other. The simplest

and most fundamental LRI is the algebraically

decaying Ising interaction, ∼ r−(d+σ), where

d is the dimension of the lattice and σ is the

decay exponent. For σ smaller than the lower

critical decay exponent, σL, the phase transi-

tion is expected to belong to the mean-field

universality class. Especially, in the limit of

d + σ → 0, the system becomes equivalent

to the fully connected Ising model. On the

other hand, when σ becomes larger than the

upper critical decay exponent, σU, the nearest-

neighbor interaction dominates and the tran-

sition belongs to the short-range universality

class. In the intermediate regime, σL < σ <

σU, the critical exponents vary continuously

as σ changes (Fig. 1). For the d-dimensional

LRI system, this continuous change of the crit-

ical exponents can be interpreted as a continu-

ous change of the effective dimension between

d and the upper critical dimension [3].

Similarly, the presence of randomness of-

ten changes the effective dimension of the sys-

tem as well. The random-field Ising model

(RFIM) is one of the representative random

systems, which has randomly distributed ex-

ternal field [4]. In contrast to the LRI, how-

ever, the random field generally decreases the

effective dimension. Especially, near the up-

per critical dimension, it is predicted that the

critical behavior of the d-dimensional RFIM is

the same as the pure system in (d− 2) dimen-
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Figure 1: Schematic universality phase dia-

gram of the Ising model with LRI. In the in-

termediate region, the effective dimension in-

creases as σ decreases.

sions. This phenomena is called “dimensional

reduction” [5]. Moreover, it is expected that

the spatial correlation between random fields

can further decrease the effective dimension.

For the spatial correlation that decreases alge-

braically with exponent d − ρ, the renormal-

ization group study predicts that the upper

critical dimension DU and the lower critical

dimension DL become as DU = dU + ρ and

DL = dL + ρ, respectively, for ρ ≥ 0, where

dU = 6 and dL = 2 are those for uncorrelated

random field [6]. This means that the effective

dimension D of the d-dimensional RFIM with

correlation exponent ρ is given by d− ρ, if we

interpolate the effective dimension linearly be-

tween the lower and upper critical dimensions.

In this article, after a brief review of recent

advances in the Markov-chain Monte Carlo

method, we will present our results of extensive

Monte Carlo simulation on the spin systems

with LRI and the spatially correlated RFIM.

2 Advances in Markov-chain

Monte Carlo method

The Markov-chain Monte Carlo (MCMC)

method is one of the most powerful algo-

rithms for numerical simulations in many re-

Figure 2: Schematic universality phase dia-

gram of the O(n) spin model with correlated

random-field proposed (taken from Ref. [1]).

For ρ > 0, the effective dimension decreases

linearly as ρ increases.

search fields, such as the statistical physics,

particle physics, chemistry, biology, informat-

ics, finance, etc. In principle, the method can

achieve statistically exact sampling asymptot-

ically as long as the Markov chain satisfies

the (total) balance and the ergodicity. Since

the invention of the Metropolis algorithm in

1953, the detailed balance condition, a.k.a. re-

versibility, has been additionally imposed in

most practical simulations as a sufficient con-

dition for the total balance. Under the de-

tailed balance condition, we enforce that ev-

ery elementary transition should balance with

its inverse process. Although a Markov chain

satisfying the balance condition and ergodic-

ity can generate random variables, or config-

urations, according to the target probability

distribution, the MCMC method often suf-

fers from strong correlation between successive

samples in practice, which causes slow conver-

gence and reduction in the effective number

of samples. In other words, the strong auto-

correlation may introduce systematic error as

well as the increase of statistical error.
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In generally, we should take the following

five key points into account in order to achieve

efficient MCMC sampling:

i) Representation (definition of “configura-

tions”).

ii) Choice of ensemble (weight of configura-

tions).

iii) Generation of candidate configurations

from the current configuration.

iv) Choice of transition kernel (probability),

given a set of candidate configurations.

v) Algorithm for choosing a configuration ac-

cording to transition probability.

From the viewpoint of the ergodicity, i), ii) and

iii) are essential. In the quantum Monte Carlo

method, for example, the non-local cluster up-

date method [7], in which a world-line config-

uration is updated globally thorough a graph

configuration, is often used. Another major

technique is the worm algorithm [8, 9], where

we introduce a pair of defects into the world-

line configurations, to relax the strong restric-

tion and recover the ergodicity. These tech-

niques often reduce the correlation time drasti-

cally by orders of magnitude as well especially

near the phase transition point.

More recently, from viewpoint iv), the im-

portance of breaking the reversibility has been

discussed intensively. In Ref. [9], we have

shown that it is generally possible to construct

an irreversible transition kernel by using the

geometric allocation technique, and also that it

can indeed reduce the auto-correlation drasti-

cally in many relevant cases by minimizing the

rejection probability. The concept of break-

ing the reversibility can be applied not only to

the elementary transition but also to the chain

of events (or updates) [9, 10], where the global

stochastic flow is introduced in the phase space

and the Markov chain is further accelerated.

The technique of geometric allocation for

the probability even improves the algorithm

for choosing configuration [viewpoint v)]. In-

deed, it is possible to draw a random num-

ber according to arbitrary probability distri-
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Figure 3: Scaling plot of the magnetization

squared for the 1D transverse-field Ising model

with σ = 1 and Γ = 1 (taken from Ref. [12]).

bution in a constant time by using Walker’s

method of aliases. This method, together with

the space-time interchange technique, can re-

duce the computational time especially for the

case where the number of candidates is large,

such as models with LRI [11]. In the naive

implementation of the Metropolis algorithm

or the Swendsen-Wang algorithm, the total

cost of one Monte Carlo step for N spins is

proportional to N2. However, since the in-

teraction becomes weaker as the distance in-

creases, one may reduce the computational

cost from O(N2) to O(N) without introduc-

ing any approximation [12]. The present O(N)

technique can be generalized to the quan-

tum Monte Carlo method as well as the ex-

tended ensemble methods, such as the ex-

change Monte Carlo, multi-canonical method,

and Wang-Landau sampling, etc.

3 Ising model with long-range

interaction

Transverse-field Ising model

In this section, we first consider the one-

dimensional (1D) transverse-field Ising model,
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whose Hamiltonian is defined as

H = −
∑
i<j

Jijσ
z
i σ

z
j −

∑
i

Γσxi (1)

with

Jij = r
−(1+σ)
ij . (2)

In the absence of the transverse field, Γ, this

model reduces to the classical Ising chain. In

the classical case, the lower and upper criti-

cal decay exponents are known as σL = 1
2 and

σU = 1, respectively. When σ > σU, there is

no finite-temperature phase transition.

At σ = σU, however, it is known that the

system exhibits a Kosterlitz-Thouless (KT)

phase transition at a finite temperature [13].

This KT transition is expected to persist, as

long as Γ is sufficiently small. In Fig. 3,

the system size and the temperature depen-

dence of the magnetization squared, m2, is

shown for the quantum case, Γ = 1. Sur-

prisingly, all the data with different system

sizes (from L = 28 to 220) collapse on a single

curve, by rescaling the temperature and the

magnetization squared as (T/Tc) log2(L/L0)

and (2m2 − 1) log(L/L0), where T is the tem-

perature, and Tc and L0 are determined as

1.38460(25) and 0.26(10), respectively, by us-

ing the least-squares fitting. This logarithmic

scaling behavior strongly suggests that the KT

transition in the classical case is robust against

the quantum fluctuation, though the transition

temperature becomes lower [Tc = 1.52780(9)

for Γ = 0].

At critical transverse field Γc, the finite-

temperature KT transition vanishes, at which

a quantum multicritical point emerges. By

the finite-size scaling analysis, we evaluated as

Γc ' 2.5236, and found that the spin gap ∆

and the susceptibility χ at Γc are scaled as ∆ =

L−zf(LzT ) and χ = Lγg(LzT ), respectively,

with the dynamical exponent z = 0.501 and

the exponent for the susceptibility γ/ν = 0.99.

These value are consistent with the predicted

value z = 0.5 and γ/ν = 1 by the renormaliza-

tion group analysis [14].
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Figure 4: Ground-state phase diagram of the

1D transverse-field Ising model. In the shaded

region, there occurs a finite-temperature tran-

sition.

In Fig. 4, we present the ground state phase

diagram of the transverse field Ising model

with LRI obtained by the quantum Monte

Carlo simulation. In the limit of σ = ∞,

the present model is reduced to the near-

est neighbor Ising model, where the quan-

tum phase transition of the classical two-

dimensional (2D) Ising universality occurs at

Γ = 1. As σ decreases, the critical transverse

field increases. We found that, for σ ≥ 2, the

universality class of the quantum phase tran-

sition is the same as the 2D classical Ising uni-

versality, whereas the critical exponents, z and

γ/ν, start to deviate continuously from the 2D

classical Ising values for σ < 2.

Critical decay exponent in two dimen-

sions

Nest, we discuss the classical 2D case (d = 2

and Γ = 0). While there is a consensus

that σL = d/2 = 1 in 2D, there still re-

main theoretical as well as numerical discus-

sions about the upper critical decay exponent

σU [15, 16, 17, 18, 19, 20, 21]. One of the

largest difficulty in the numerical analysis of

the present model is the large finite-size correc-

tions to the scaling in the vicinity of the critical

decay exponent. To overcome this problem,
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Figure 5: System-size dependence of the con-

ventional Binder ratio Q and the self-combined

Binder ratio SSR at σ = 7/4. The solid lines

denotes the result of least-squares fitting to

A+ aL−b.

instead of the critical exponents, we use the

value of the Binder ratio, Q = 〈m2〉2/〈m4〉.
The Binder ratio at the critical point, which

is also referred to as the universal ratio, does

not depend on the system size and takes a uni-

versal value, since it is the ratio of two phys-

ical quantities that have the same anomalous

dimension. It can be calculated more accu-

rately than the critical exponents, which leads

to more reliable identification of the universal-

ity class [22].

In order to further suppress the finite-size

corrections, we introduce another quantity,

named the “self-combined Binder ratio”,

S(T, L) =
1

Q∞
Q(T, L) +Q∞

1

Q(T, L)
− 2,

(3)

where Q∞ denotes the universal ratio. This

quantity is a linear combination of Q and Q−1.

It is easily seen that regardless of the form of

the correction term in Q at the critical point,

the leading correction of the universal ratio is

removed automatically if Q∞ is chosen as the

exact universal ratio [23]. Indeed, we already

know the precise value of the universal ratio for

the mean-field universality and the 2D short-

range Ising universality as QMF = 0.456947

and QSR = 0.856216, respectively [24, 25].

By using the O(N) Swendsen-Wang cluster

algorithm [12], we simulate the 2D Ising model

up to L = 4096 for σ = 0.8, 0.9, · · · , 1.9, 2.0
and perform the finite-size scaling analysis. In

Fig. 5, we show the system-size dependence of

the (standard) Binder ratio Q and the self-

combined Binder ratio SSR at σ = 7/4. For

the definition of SSR, we use the universal ratio

for the short-range Ising universality, QSR =

0.856216. We observe that the self-combined

Binder ratio converges rapidly to zero. This

strongly supports that the assumed value for

Q∞ is correct, that is, σ = 7/4 belongs to the

short-range universality. We also confirmed

that the extrapolated value of SSR grows as

∼ (7/4 − σ)2 for σ < 7/4. Thus, we con-

clude that the upper critical decay exponent

is σU = 7/4 for d = 2 [23].

On the other hand, the conventional Binder

ratio Q is extrapolated to some different value

from QSR. This is due to the existence of

strong (likely logarithmic) corrections at the

critical decay exponent. We also confirmed

that at σ = 1, SMF converges to zero, whereas

Q shows slow convergence.

4 Random-field Ising model

with spatial correlation

Correlated random field

In this section, we discuss the dimensional re-

duction in the random-field Ising model with

spatial correlation. We consider the Gaussian

random fields with algebraically long-range

correlation,

P (hi) =
1√

2πhR
exp[−h2i /2h2R] (4)

Cij = 〈〈hihj〉〉 =

{
h2R for i = j

ah2R/r
d−ρ
ij otherwise,

(5)

where 〈〈·〉〉 denotes the average over the ran-

dom field realizations. The random-field gen-

eration is accomplished by the decomposition

of (Ld×Ld) correlation matrix C. Let us con-

sider the factorization of the positive definite
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Figure 6: Scaling plot of the connected suscep-

tibility of the 3D RFIM with (a) ρ = −∞, (b)

ρ = 0.0, (c) ρ = 0.5, and (d) ρ = 1.0.

symmetric matrix C into a matrix M and its

transpose, C = MMT . This factorization can

be done by the Cholesky decomposition or the

diagonalization. Once the matrix M is con-

structed, we can generate the correlated Gaus-

sian random fields Y by multiplying the ma-

trix M and a vector of independent standard

Gaussian random numbers X as Y = MX. It

is straightforward to confirm that the correla-

tion between the components in Y is equal to

C, i.e., 〈〈Y Y T 〉〉 = C. Note that the cost for the

random field generation is proportional to L3d.

In this work, we use the parallel eigensolver via

the Rokko Library [26] to generate 220 sam-

ples of random field up to L = 32 and 14 for

three-dimensional (3D) and four-dimensional

(4D) cases, respectively.

Finite size scaling analysis

We calculated the specific heat, the con-

nected and disconnected susceptibilities, the

connected and disconnected Binder ratios, etc,

by using the MCMC method. The connected

and disconnected susceptibilities are defined by

χcon = Ld〈〈 〈m2〉 − 〈|m|〉2 〉〉 (6)

χdis = Ld[〈〈 〈|m|〉2 〉〉 − 〈〈 〈|m|〉 〉〉2], (7)

respectively. The former represents the ther-

mal fluctuations, whereas the latter does the

random fluctuations. Accordingly, they are

characterized by different critical exponents, γ

and γ̄, respectively.

In Fig. 6, we show the finite-size scaling plot

of the connected susceptibility,

χcon = Lγ/νχ̄con(L1/ν(T − Tc)) (8)

for the 3D RFIM with ρ = −∞, 0.0, 0.5, and

1.0, from which the exponent γ and ν are es-

timated as listed in Table 1. We also per-

formed similar analysis for the 4D RFIM with

ρ = −∞, 0.0, 0.5, 1.0, and 1.5. We found

that the exponent γ increases gradually as ρ in-

creases. This behavior is consistent with that

the effective dimension decreases as ρ increases
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Table 1: Critical exponents of the 3D and 4D

RFIM obtained by the finite-size scaling anal-

ysis for the connected susceptibility.

d ρ Tc ν γ D

3 −∞ 3.42(4) 1.4(2) 2.3(2) 1.3(1)

0.0 3.55(6) 1.5(4) 2.5(7) 1.4(2)

0.5 3.43(5) 1.5(3) 2.5(4) 0.8(3)

1.0 3.17(9) 1.8(4) 3.0(2) 0.3(3)

4 −∞ 5.74(3) 0.8(1) 1.5(2) 2.0(2)

0.0 5.82(6) 1.1(2) 2.1(3) 2.1(2)

0.5 5.68(9) 1.3(3) 2.3(3) 1.7(2)

1.0 5.5(2) 1.6(3) 2.6(4) 1.3(3)

1.5 4.9(3) 2.3(6) 3.4(7) 1.0(1)

for ρ ≥ 0 (cf. γ = 1, 1.2372, and 7/4 for the

pure Ising model in four, three, and two di-

mensions, respectively). We observe the crit-

ical exponents for the 3D case with ρ = 0.0

agree with those for the 4D case with ρ = 1.0.

This is again consistent with the previous the-

oretical prediction, D = d−ρ at the upper and

lower critical dimensions.

As seen clearly in Fig. 6, the finite-size scal-

ing becomes worse as ρ increases. This might

be due to the fact that the effective dimension

approaches to the lower critical dimension, or

becomes lower than that. Indeed, by using the

scaling relation, η = 2 − γ/ν together with

D = d − ρ − 2 + η, we can estimate the effec-

tive dimension of the criticality as presented in

Table 1. The effective dimension is the same

for ρ = −∞ and 0.0, and starts to decrease

both in the 3D and 4D cases as expected, and

it becomes smaller than the lower critical di-

mension, D = 1, for 3D case with ρ = 1.0.

Finally, we mention the double peak struc-

ture of the specific heat. In Fig. 7, we show the

temperature dependence of the specific heat

of the 3D RFIM with ρ = 0.5. The sharper

peak at lower temperature corresponds to the

phase transition to the ordered phase. How-

ever, we observe that for sufficiently large ρ

an extra peak appears at higher temperature.

The weird double peak behavior may manifest
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Figure 7: Temperature dependence of the spe-

cific heat of the 3D RFIM with ρ = 0.5.

Growth of the second peak around T ≈ 4.0

is clearly observed.

another critical behavior at higher tempera-

ture [27], though we have no solid explanation

for for the moment,

5 Summary

In this article, we have reviewed the recent

advances in the Markov-chain Monte Carlo

method, especially the irreversible kernel and

the O(N) method based on the geometric allo-

cation technique. We present the results of our

recent Monte Carlo study on the Ising model

with long-range interaction as well as the corre-

lated random-field Ising model, both of which

exhibits critical behavior with non-integer ef-

fective dimensions depending on the decay ex-

ponent of the interaction or the spatial corre-

lation of the random field. We established the

upper and lower critical decay exponent for the

2D Ising model with LRI by using the O(N)

cluster Monte Carlo method together with the

self-combined Binder ratio. For the correlated

RFIM, we also observed that the effective di-

mension of the universality becomes small as

the decay exponent increased. However, by the

present accuracy of the MCMC simulation, we

can not determine the critical decay exponent

of the spatial correlation, at which the effective

dimension becomes unity and thus the finite-

temperature phase transition vanishes. This
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is due to the lack of efficient MCMC method

for the system with random field. A further

development of the MCMC technique for such

systems with lower symmetry is strongly de-

manded.
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Mod. Phys. C 6 (1995) 359.

[25] G. Kamieniarz and H. W. J. Blöte: J.
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