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Abstract

Optimizing thermophysical properties of solids, in-
cluding thermal expansion, thermal conductivity,
and thermodynamic stability is crucial for develop-
ing energy- or light-harvesting material that shows
a high device performance at operating tempera-
tures. To achieve a simulation-guided design of
suchmaterials, lattice vibration (phonon excitation)
needs to be modeled accurately beyond the quasi-
harmonic level. In recent years, several impor-
tant theoretical and technical improvements have
been made in the field of ab initio phonon calcu-
lation. These methods have overcome the limita-
tion of the conventional phonon calculationmethod
and further strengthened the predictive power of
first-principles calculations based on density func-
tional theory. In this report, we review some of
the newcomputational approaches and demonstrate
their validity through applications to a hydrogen-
rich superconductor and thermoelectric materials
in which phonons are strongly anharmonic.

1 Introduction

Predicting and understanding thermophysical prop-
erties of solids only from the crystal structure is
crucial for achieving a simulation-guided design of
high-performance energy- and light-harvestingma-
terials including but not limited to thermoelectric,
photovoltaic, and superconducting materials. For
example, lattice thermal conductivity, κL, needs to
be reduced to achieve a high thermoelectric figure-

of-merit ZT . Also, the critical temperature (Tc) of
ferroelectric phase transition plays a crucial role in
realizing a giant dielectric constant of polar semi-
conductors at ambient temperature, as exemplified
by the commercially used BaTiO3-based ceram-
ics. Since these finite-temperature thermophysi-
cal properties are characterized by the thermal and
quantum fluctuation of nuclei, it is necessary to
consider the excitation of phonons for achieving a
meaningful prediction.

First-principles phonon calculation is performed
actively and routinely based on density functional
theory (DFT). In most cases, the harmonic ap-
proximation (HA) is adapted, assuming that the
atomic displacements are much smaller than in-
teratomic distances. While the HA gives reason-
able phonon dispersion curves and thermodynamic
quantities for many semiconductors and metals, it
often becomes inaccurate and sometimes breaks
down completely for high-performance thermo-
electric and dielectric materials where the atomic
displacements can be as large as 10% of an in-
teratomic distance. Moreover, the HA obviously
fails to describe physical properties related to the
anharmonicity of the potential, including phonon-
phonon scattering and structural phase transition.
To solve these limitations of the HA, a more ad-
vanced phonon calculation method that can include
phonon anharmonicity is required.

In the last few decades, several new ab ini-
tio phonon calculation methods have been pro-
posed as an efficient way to include anharmonic
effects [1–7]. Among them, the self-consistent
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phonon (SCP) based approaches [3–7] are partic-
ularly important because they enable us to access
finite-temperature phonon frequencies and polar-
ization vectors as well as Tc values of structural
phase transition [8, 9]. Also, the recent advances
in thermal transport theory are noteworthy [10,11].
The advent of these new methods, as well as their
efficient implementations in open-source software,
have opened up a way to study complicated lat-
tice dynamics in emergent materials and to predict
finite-temperature thermophysical properties that
cannot be reached by the conventional method.
In this short report, we introduce the basics of the

new phonon calculation methods and demonstrate
their validity through applications to a hydrogen-
rich superconductor, thermoelectric clathrate, and
thermoelectric tetrahedrite.

2 Recent progress of ab initio
phonon calculation

Self-consistent phonon theory

The self-consistent phonon (SCP) theory, which
was originally developed by Hooton [12], aims to
calculate phonon frequencies and polarization vec-
tors that are renormalized by anharmonicity of the
potential. In this theory, an existence of a well-
defined effective one-body Hamiltonian

H0 =
∑
qν

~Ωqν

(
b†qνbqν +

1

2

)
(1)

is assumed. Here, q and ν are the momentum
and branch index of phonons, respectively, and
b†qν (bqν) is creation (annihilation) operator of the
phonon qν. The frequency Ωqν is the effective
frequency that is renormalized by anharmonic ef-
fects; therefore, its value differs from the harmonic
frequency ωqν . In addition, since the effective po-
larization vectors {εqν} are also different from the
harmonic ones {eqν}, b† and b in Eq. (1) differ
from the creation and annihilation operators of the
harmonic Hamiltonian H0.
Now, let us consider how to determine Ωqν and

{εqν}. To this end, we introduce the exact Hamil-
tonian H and associated density operator ρH =

e−βH/Tr(e−βH), with β = 1/kT . The Hamilto-
nianH includes all anharmonic terms; therefore, it
may be written asH = H0 +U3 +U4 + . . . where
Un is the potential energy of the nth-order anhar-
monicity. By usingH and ρH , the exact Helmholtz
free-energy is given as

FH = Tr(ρHH) +
1

β
Tr(ρH ln ρH). (2)

Next, let us substitute a trial density matrix de-
fined as ρH0 = e−βH0/Tr(e−βH0) for ρH in
Eq. (2). We then obtain FH(H0) = Tr(ρH0H) +
1
βTr(ρH0 ln ρH0). By using the Jensen’s inequal-
ity e〈X〉 ≤ 〈eX〉, it is straightforward to show the
following Feynman–Gibbs–Bogoliubov inequality
holds:

FH ≤ FH(H0). (3)

In the SCP theory, Ωqν and {εqν} are determined
so that the right-hand side of Eq. (3) is minimized.
This is nothing but a mean-field approximation.
Indeed, the SCP theory is a phonon version of the
Hartree–Fock theory.
The minimization of FH(H0) can be performed

by repeatedly calculating atomic forces in super-
cells with stochastically sampled atomic configu-
rations and updating the variational parameters in
H0 [5]. An alternative approachwe have developed
is to derive the SCP equation via the condition of
∂FH(H0)/∂Xi = 0, where Xi comprises all vari-
ational parameters including Ωqν and {εqν}. For
the brevity of the explanation, let us assume that the
polarization vectors do not change by anharmonic
effects. Also, we consider the anharmonic terms
up to the fourth-order because fifth- and higher-
order terms are less significant. We then obtain the
following SCP equation [6, 13]:

Ω2
qν = ω2

qν +
1

2

∑
q1ν1

Φ(qν;−qν; q1ν1;−q1ν1)

× ~[1 + 2n(Ωq1ν1)]

2Ωq1ν1

. (4)

The second term on the right-hand side is the renor-
malization term associated with the quartic anhar-
monicity, whose magnitude is proportional to the
mean-square displacement of normal coordinate
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〈Q∗qνQqν〉 = ~[1 + 2n(Ωqν)]/2Ωqν with n(ω) be-
ing the Bose–Einstein distribution function. Since
n(ω) is temperature dependent, the effective fre-
quency Ωqν also changes as a function of tempera-
ture.
We have shown that Eq. (4) gives phonon dis-

persion curves of cubic SrTiO3 that agree well
with the results of inelastic neutron scattering
measurements. Once we compute all quartic
coefficients Φ(qν;−qν; q1ν1;−q1ν1) in Eq. (4),
the effective frequencies at various temperatures
can be obtained quickly. To compute the quar-
tic coefficients, we first calculate the real-space
fourth-order interatomic force constants (IFCs)
in a supercell. Then, the real-space IFCs are
transformed into the normal coordinate repre-
sentation Φ(qν;−qν; q1ν1;−q1ν1). The com-
putational complexity of this transformation is
O(N irred.

q Nq1N
2
ν ), where N irred.

q is the number
of irreducible sets of q points, Nq1 is the num-
ber of q1 points, and Nν is the number of phonon
branches. When we consider the anharmonic mix-
ing of polarization vectors, we also need to com-
pute the off-diagonal elements of the quartic co-
efficients. In that case, the computational com-
plexity becomes O(N irred.

q Nq1N
4
ν ). In our imple-

mentation of Eq. (4) in alamode [14], we use a
hybrid parallelization of MPI and OpenMP. With
this implementation, the SCP calculation has been
successfully performed even for complex struc-
tures. For example, a SCP calculation of ther-
moelectric clathrate Ba8Ga16Ge30 (Nν = 162,
N irred.
q Nq1 = 1) with the polarization mixing fin-

ishes within 10 hours when we use 432 CPU cores
of ISSP system B (sekirei).

Phonon scattering

While the SCP method can compute anharmonic
phonon frequencies and polarization vectors effi-
ciently, it is still based on a non-interacting pic-
ture [Eq. (1)]. Therefore, the phonon linewidth is
zero, which leads to the unphysical result that the
phonon lifetime and lattice thermal conductivity
are infinite. To solve this problem, phonon scatter-
ing processes must be considered. In bulk semi-

conductors, the most dominant source of phonon
scatterings is the phonon-phonon scattering asso-
ciated with the lattice anharmonicity. In the low-
temperature region, other scattering processes, in-
cluding phonon-impurity scattering and phonon-
boundary scattering, also become relevant. How-
ever, ab initio treatment of these extrinsic phonon
scatterings is still challenging. Therefore, we will
focus on the intrinsic phonons scattering below.
The intrinsic scattering rate of phonons can be

obtained by applying many-body perturbation the-
ory to the anharmonic Hamiltonian. Here, the
lowest-order perturbation term is the cubic anhar-
monicity U3. The unperturbed Hamiltonian may
be the true harmonic Hamiltonian H0, only if all
phonons are dynamically stable (ω2

qν > 0), or the
effective one-body HamiltonianH0 obtained by an
SCP calculation. When we use H0 as the un-
perturbed Hamiltonian, the phonon self-energy of
the bubble, which gives a first-order correction, is
given as [15]

Σ
(B)
qν (iωm) =

1

16

∑
q1q2

∑
ν1ν2

~|Φ(−qν; q1ν1; q2ν2)|2
ωqνω1ω2

×∆(−q + q1 + q2)f(1, 2, iωm),

(5)

f(1, 2, iωm) =
∑
σ=±1

σ

[
1 + n1 + n2

iωm + σ(ω1 + ω2)

− n1 − n2
iωm + σ(ω1 − ω2)

]
, (6)

where ωm = 2πm/β~. Here, for the brevity of the
notation, we represent ωq1ν1 as ω1 and n(ω1) as n1.
The function ∆(q) in Eq. (5) becomes 1 when q is
an integral multiple of the reciprocal lattice vector
G and 0 otherwise. Therefore, the double loop
over q points in Eq. (5) can be reduced to a single
loop. After performing an analytic continuation to
the real axis, we obtain the phonon linewidth as
Γ
(B)
qν = ImΣ

(B)
qν (ωqν) and the phonon frequency

shift as ∆
(B)
qν = −ReΣ

(B)
qν (ωqν).

In many semiconductors, the linewidth calcu-
lated from Γ

(B)
qν shows reasonable agreement with

experimental data, including its linear temperature-
dependence in the high-temperature range. How-
ever, in some cases, the theoretical value may un-
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derestimate the experimental linewidth most likely
due to the presence of additional scattering chan-
nels of phonons, including phonon-impurity scat-
tering and higher-order phonon-phonon scatter-
ings. Recently, the self-energies of these additional
scattering processes have been evaluated based on
DFT for relatively simple systems and reported to
be important in correctly understanding the ther-
mal transport behavior [16, 17], which is the main
topic of the next subsection.

Thermal transport

First-principles calculation of κL has been an ac-
tive research topic in recent years because its active
control would lead to efficient energy conversion
and thermal management devices. In particular,
significant effort has been placed on elucidating
the atomistic-level origin of ultralow thermal con-
ductivity of efficient thermoelectric materials such
as intermetallic clathrates and SnSe. To compute
κL from first principles, the semi-classical Peierls–
Boltzmann theory (PBT) is usually adopted. In the
PBT, we first assume that the heat flux is carried
by phonon quasiparticle; therefore, the heat flux
operator is approximated as

jph =
∑
qν

~ωqνvqνb
†
qνbqν . (7)

Here, vqν = ∂ωqν/∂q is the group velocity
of phonon, which is readily obtained from the
phonon dispersion curves. Then, after introducing
the single-mode relaxation-time approximation, we
obtain the thermal conductivity tensor

κP =
∑
qν

cqνvqν ⊗ vqντqν , (8)

with cqν being the mode specific heat. The phonon
lifetime τqν can be obtained from the phonon
linewidth as τqν = ~/(2Γqν). When we con-
sider the dominant bubble self-energy for Γqν , the
thermal conductivity shows the temperature de-
pendence of κL ∝ T−1 in the high-temperature
range, in accord with many experimental observa-
tion. So far, the PBT-based calculations have been
performed for many thermoelectric materials and

explained their thermal transport behavior success-
fully.
While the PBT has been successful for many

crystalline solids, it fails to describe the temper-
ature profile of κL observed in amorphous solids
and other disordered solids. In these systems, the
thermal conductivity shows little temperature de-
pendence and does not decrease even in the high-
temperature region. To understand thermal trans-
port physics in disordered solids, a beyond PBT
treatment would be necessary. One of the most
problematic assumptions made within the PBT for-
malism is the approximation of Eq. (7). More
specifically, when we express the harmonic heat
flux operator j(2) with the creation and annihilation
operators of phonons, we obtain the band diagonal
and off-diagonal terms as follows:

j(2) =
∑
qνν′

~(ωqν + ωqν′)

2
vqνν′b

†
qνbqν′

= jph +
∑
qν 6=ν′

~(ωqν + ωqν′)

2
vqνν′b

†
qνbqν′ .

(9)

Here, vqνν′ is the band off-diagonal extension of
the group velocity. In the PBT, the band off-
diagonal terms of the heat flux operator is omit-
ted. In the pioneering work by Allen and Feld-
man [18, 19], however, they showed that the off-
diagonal contribution is dominant in the disordered
solids and successfully explained the temperature-
dependence of κL observed in amorphous silicon.
In the Allen–Feldman (AF) theory, however, the ef-
fect of phonon scattering is not considered. There-
fore, their theory is still not suited for studying ther-
mal transport in disordered solids that also show
strong anharmonicity.
Recently, a new thermal transport theory that

unifies the PBT and the AF theory has been devel-
oped [10]. According to their result, the thermal
conductivity is given as

κL = κP + κC, (10)

where κP is the Peierls term defined by Eq. (8), and
κC is the coherent term associated with the inter-
band components of the heat flux operator, which
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is given as

κC =
∑
q

∑
ν 6=ν′

cqνωqν′ + cqν′ωqν

ωqν + ωqν′
vqνν′ ⊗ vqν′ν

× Γqν + Γqν′

(ωqν − ωqν′)2 + (Γqν + Γqν′)2
. (11)

While this new theory has been tested only for a
few systems so far, it is expected to improve the
prediction accuracy of κL and help us deepen our
understanding of anomalous thermal transport in
strongly anharmonic and/or disordered materials.

Efficient calculation of force constants

So far, we have introduced the state-of-the-art
ab initio phonon calculation methods. To study
phonon-related properties by using these methods,
the harmonic, cubic, and quartic IFCs are necessary
as inputs. These IFCs can be estimated by repeat-
edly calculating atomic forces in a supercell with
suitably chosen atomic configurations. In the con-
ventional supercell approach, only a few atoms in a
supercell are displaced. For instance, the harmonic
IFC between atom i and j, Φij , is estimated as
Φij = −[Fj(ui = +h)−Fj(ui = −h)]/2h, where
Fj(ui = ±h) represents the atomic force acting on
the atom j when the atom i is displaced slightly
(h ≈ 0.01 Å) from its equilibrium position. This
procedure needs to be repeated for all irreducible
ij pairs. To estimate the cubic IFC, Φijk, in the
same fashion, we need to consider, at most, four
displacement patterns for each element. Therefore,
the number of displacement patterns necessary to
obtain all relevant IFCs increases rapidly for the
higher-order terms, and the calculation of quartic
IFCs would be infeasible or extremely expensive if
possible.
To mitigate this issue, we employ the compres-

sive sensing approach [20, 21]. First, to increase
the information density obtained from a single DFT
calculation, we displace all atoms in a supercell in
random directions. For these sampled atomic con-
figurations, we compute the atomic forces; these
displacement-force data sets will be served as train-
ing data sets of a linear model. Second, instead of

calculating the IFC one by one by the central differ-
ence, we estimate all IFCs simultaneously by per-
forming linear regression. Since the atomic forces
F can be expressed as a linear function of IFCs Φ
as F = AΦ with A being a sensing matrix com-
prising atomic displacements, we can estimate the
parameter vectorΦ by using ordinary least-squares
or other regression methods. In particular, the L1

penalized regression models such as LASSO are
useful because they select and compute physically
important IFCs somewhat automatically and set the
other irrelevant parameters exactly zero.
We have applied LASSO to various systems and

tested its performance. As shown in Fig. 1, the
number of static DFT calculations could be re-
duced dramatically from what would be required
if the conventional approach were used. In these
LASSO calculations, we gradually increased the
training data sets and the cutoff radii of interac-
tion until we obtained an accurate model that re-
produces the DFT forces within ∼5% error. The
numbers shown for the conventional method are es-
timated by symmetry argument, where anharmonic
IFCs up to the fourth-order are considered within
the cutoff radii as the LASSO calculation. The effi-
cient approach, which can be 100 times as efficient
as the conventional one, enables us to perform the
SCP and PBT calculations of complex systems.
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Figure 1: Number of displacement patterns that
was used to extract IFCs by LASSO (cyan) com-
pared with the estimated number of patterns re-
quired by the conventional approach (red).
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Figure 2: Phonon dispersion curves of Fm3̄m-
LaH10 at 150 GPa calculated within the HA and
the SCP theory at T = 0 K.

3 Applications

Quantum fluctuation in record supercon-
ductor LaH10

Recently, record superconductivity at ∼250 K has
been reported for LaH10 under the high pressure of
137–218 GPa [22,23]. The possibility of the high-
Tc superconductivity in LaH10 was first predicted
by DFT calculations [24,25] and subsequently con-
firmed experimentally. In the previous DFT pre-
dictions, a sodalite-like structure of LaH10 with
space group Fm3̄m has been suggested as a crys-
tal structure that realizes a high-Tc. However, if
the phase stability is evaluated based on enthalpy,
LaH10 is predicted to be thermodynamically unsta-
ble against decomposition below 200 GPa. More-
over, Fm3̄m-LaH10 is predicted to be dynami-
cally unstable over the whole pressure range where
a ∼250 K Tc has been observed experimentally.
These contradictions likely indicate the limitation
of the conventional computational approaches.
To solve this puzzle, we have performed phonon

calculations of LaH10 with including anharmonic
effects [26]. Figure 2 shows the phonon disper-
sion of Fm3̄m-LaH10 calculated within the HA
and the SCP theory at 150 GPa. The Fm3̄m

structure is dynamically unstable when the HA is
employed, indicating the Fm3̄m structure distorts
into a low-symmetry structure. Indeed, we have

confirmed that the enthalpies of R3̄m- and C2-
LaH10 are lower than that of Fm3̄m-LaH10 by
∼50 meV per formula unit (f.u.) at 150 GPa. How-
ever, this conclusion changes when we consider the
zero-point motion of hydrogen atoms. As shown
in Fig. 2, the quartic anharmonicity renormalizes
phonon frequencies significantly and stabilizes the
phonons in the entire Brillouin zone even at T = 0

K, which is possible due to the large zero-point
motion of hydrogen atoms. After obtaining the sta-
ble phonons, we have also estimated the zero-point
energy (ZPE) and evaluated the relative stability
of the Fm3̄m structure over the distorted phases
based on enthalpy+ZPE. As a result, the Fm3̄m

phase is found to be stable than the R3̄m struc-
ture by ∼ 110 meV / f.u., which agrees better with
the experimental observation. The inclusion of the
ZPE also changes the thermodynamic stability of
Fm3̄m-LaH10. For example, the formation en-
thalpy defined as

∆H[LaH10] = H[LaH10]

− 7

8
H[LaH11]−

1

8
H[LaH3] (12)

is about 140 meV/f.u. at 200 GPa, indicating that
LaH10 decomposes into LaH3 (Cmcm) and LaH11

(P4/nmm). However, this conclusion changes
when we consider the ZPE additionally; the forma-
tion enthalpy becomes negative as∆H+∆ZPE =

−280 meV/f.u.

To summarize, our calculations have clearly
shown that the large quantum fluctuation of hy-
drogen nuclei plays a crucial role in stabilizing
the highly-symmetric Fm3̄m-LaH10 over the wide
pressure range of 137–218 GPa. We have also
calculated the superconducting Tc based on the
Migdal–Eliashberg theory and obtained an excel-
lent agreement with the experimental values ob-
tained for LaH10 and LaD10 [26]. This agreement
further confirms that the Fm3̄m phase of LaH10 is
indeed responsible for the record superconductivity
at ∼250 K.
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Figure 3: Crystal structures and phonon properties of thermoelectric clathrate Ba8Ga16Ge30 (BGG) and
tetrahedrite Cu12Sb4S13. (a) Crystal structures of (a) BGG, adopted from Ref. [27], and (d) tetrahedrite.
(b,e) Phonon dispersion curves of BGG and tetrahedrite, respectively, calculated within the HA (dotted
lines) and the SCP method at 300 K (solid lines). (c,f) Thermal conductivities of BGG and tetrahedrite,
respectively, calculated by different methods. For comparison, the experimental values of Refs. [28–30]
are also shown.

Thermal conductivity in complex thermo-
electric materials

The thermal transport in complex thermoelectric
materials has attracted special attention not only
because their thermal conductivity is unusually
low but because they sometimes show a glasslike
temperature dependence even though they pos-
sess periodic crystal structures. In this report, we
will focus on the origin of the unusual tempera-
ture dependence of κL observed in type-I clathrate
Ba8Ga16Ge30 (BGG) and tetrahedrite Cu12Sb4S13,
whose crystal structures are shown in Figs. 3 (a)
and (d). In our previous study [31], we have shown
that the low-κL value of BGG can be attributed
to the strong phonon-phonon scattering induced
by the presence of low-frequency optical phonons.
We could successfully reproduce the experimen-
tal κL values up to ∼ 100 K by using Eq. (8).
However, the temperature dependence weaker than
κL ∝ T−1 could not be explained by the conven-
tional PBT. In Cu12Sb4S13, κL is almost tempera-

ture independent, which cannot be explained by the
conventional PBT. Actually, the HA yields imag-
inary phonons for Cu12Sb4S13, which hinders a
direct application of Eq. (8).

To understand the origin of the unusual tem-
perature dependence in BGG and tetrahedrite, we
have recently performed SCP calculations of these
complex materials. Also, the thermal conductivity
is evaluated based on Eq. (10) for which the SCP
eigenvalues and eigenvectors are used as inputs.

Figures 3 (b) and (e) show the calculated phonon
dispersion curves of BGG and tetrahedrite, respec-
tively. The phonon dispersion curves calculated
within the HA and SCP theory are somewhat sim-
ilar, particularly for the high-frequency phonon
modes. In the low-frequency range, however, we
can see notable differences. In BGG, the frequency
of low-lying optical phononmodes around 4.5 meV
increaseswith heating. These phononmodes corre-
spond to the collective vibration of Ba guest atoms
inside the large cavities made by the host frame-
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work, as indicated by the red arrows of Fig. 3 (a).
These phononmodes are often called “rattling“mo-
tion. In tetrahedrite, the unstable phononmodes ex-
ist within the HA. These phononmodes correspond
to the collective vibrations of Cu(2) atoms, which
are located on the triangle planes made by sulfur
atoms (see Fig. 3(d)). Since the displacement of the
Cu(2) atoms occur in the direction perpendicular
to the triangle planes, these characteristic phonon
modes were named “planar rattling” [30]. In our
SCP calculations, the planar rattling modes were
stabilized by anharmonic renormalization above∼
80 K.

Next, we have calculated κP and κC of Eq. (10)
separately; the results are compared with available
experimental data in Figs. 3 (c) and (f). When we
employed the harmonic phonon dispersion in cal-
culating the phonon lifetimes and κP, the thermal
conductivity was significantly underestimated, as
shown by the dashed line of Fig. 3 (c). When the
SCP dispersion was used instead, we could reach
a nice agreement with the experimental data, in-
cluding the temperature dependence weaker than
κL ∝ T−1. Since the low-lying optical phonons
strongly hybridize with the heat-carrying acous-
tic phonons, a little temperature-dependence of
the rattling-mode frequency gives rise to the un-
usual temperature profile of κL [27]. The coherent
contribution κC calculated from Eq. (11) accounts
for about 10% of total κL of BGG at 300 K. For
tetrahedrite, the temperature dependence of κL is
more exceptional as shown in Fig. 3 (f). Inter-
estingly, the little temperature dependence can be
explained qualitatively by the Peierls term based
on the temperature-dependent SCPwave functions.
Still, the calculated κP value significantly under-
estimates the experimental thermal conductivity
for the entire temperature range. This discrep-
ancy can be cured by including the coherent term
κC; the sum of two contributions, κP + κC, re-
produces the experimental values even quantita-
tively. Such a large coherent contribution has al-
ready been reported for orthorhombic halide per-
ovskite CsPbBr3 [10], where the particle-like ther-
mal transport is hindered by the strong phonon-

phonon interaction. We believe the coherent term
κC should be significant not only in disordered
solids but also in strongly anharmonic (ordered)
solids where the phonon linewidths become broad,
and the phonon spectral weights overlap with each
other.

4 Summary

In this short report, we reviewed the recent develop-
ment of new phonon calculation methods that can
treat the intrinsic effects of lattice anharmonicity
beyond the quasiharmonic level. We showed that
the self-consistent phonon scheme solves the limi-
tations of the harmonic phonon theory by incorpo-
rating the quartic anharmonicity at the mean-field
level. Also, the unified theory of thermal transport,
which can account for the coherent thermal trans-
port in addition to the particle-like contribution,
was shown to better explain the anomalous ther-
mal transport observed in complex thermoelectric
materials.
All of the methods focused in this report are al-

ready available in the alamode software [32]. We
kindly invite interested readers to visit the home-
page and try the software.
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