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Abstract:
In this activity report, we present an

overview of our recent extensive Monte Carlo
simulations performed on the ISSP supercom-
puter (SYSTEM B) [1][2][3] to study our ef-
fective theoretical model for the disorder-free
spin-glass transition observed experimentally
in the pyrochlore oxide Y2Mo2O7. By taking
into account not only the spin but also the or-
bital degrees of freedom of the Mo ions, we
found a new type of glass transition - spin-
orbital glass transition.

1 Introduction

Glass is a generic state of matters which can
be found in a diverse range of systems rang-
ing from soft to hard condensed matters. Yet,
unlike crystalline states with long-ranged or-
dering of periodic structures, the very mech-
anism(s) of the emergence of glasses remain
quite elusive. The exceptional case is the fam-
ily of disordered magnets with quenched disor-
der, i. .e. spin-glasses. In spin-glasses, the ex-
istence of thermodynamic glass transitions is
established by experiments, theories and sim-
ulations (see for reviews [4, 5, 6, 7]). But ap-
parently, glasses without quenched disorder is
more ubiquitous in nature and in industrial
materials. Understanding the mechanism of
the emergence of glasses without quenched dis-
order remains as one of the most important
unsolved problems in physics [8].

Majority of glassy systems without
quenched disorder emerge from supercooled
liquids. Typical examples are the structural

glasses obtained by supercooling molecular
liquids or making densely packed soft-matters
like colloids. The most important basic ques-
tion there is to clarify whether the so-called
Kauzmann transition[9], which is a putative,
idealized thermodynamic glass transition, can
take place in the supercooled liquid state.
Recently important progress was made on the
theoretical side: a mean-field theory which
combines the density functional theory of
liquids [10] and the replica method used in
statistical mechanics of disordered systems
[11] established that the ideal glass transition
exists (at least) in the large dimensional limit
(see for a review [12]). However, the fate
of ideal thermodynamic transition in finite
dimensions is largely unknown [13]. The
problem is difficult to solve precisely because
of the glassiness: the extremely sharp increase
of the relaxation time (viscosity) going deeper
into the supercooled liquid state makes it very
difficult to measure quantities in equilibrium.
Another reason is that the super-cooled liquid
state is a meta-stable state which should
be replaced by the crystalline state in true
equilibrium. A possible way out of these
difficulties is to seek simple lattice models,
which mimic the basic phenomenology of
structural glasses, carefully designed to avoid
crystalline transitions, and allow various
simulation techniques developed for lattice
models [14].

In principle, glass transitions similar to
those found in the supercooled liquids can
also take place in spin systems. Indeed one
can show exactly that the ideal glass tran-
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sitions can take place in spin systems with-
out quenched disorder, by examing supercooled
paramagnetic states in the large dimensional
limit [15]. However, in reality, the metasta-
bility limit of the paramagnetic state toward
long-ranged ordering of periodic structures
(corresponding to the Kirkwood instability of
liquids [16]) may preempt the ideal glass tran-
sition (see for instance [17]).

A very promising playground to explore
glass physics is geometrically frustrated mag-
nets on corner-shared lattices such as the
Kagome lattice and pyrochlore lattice (see
Fig. 1 (a)). In general, glassy states appear
when periodic long-range ordering is avoided
down to very low temperatures or high densi-
ties where strong interactions become impor-
tant. Therefore frustration is a key ingredi-
ent for glass physics [18]. The most spectacu-
lar example is the pyrhoclore oxcide Y2Mo2O7,
which is known experimentally to exibit clear-
cut spinglass transitions without appreciable
quenched disorder [19, 20, 21, 22, 23, 24, 25].
Moreover, in sharp contrast to the struc-
tural glass transition mentioned above, the
spin-glass transition emerges directly out of
the paramagnetic state as a 2nd order tran-
sition much like the conventional spin-glass
transitions[4, 5, 6, 7], without the need to go
through the metastable ’supercooled’ param-
agnetic state. Actually, quite remarkably, the
phenomenology of the spin-glass transition and
even the critical exponents associated with the
spin-glass transition [19, 20, 25] are nearly in-
distinguishable from that of the conventional,
canonical spinglasses with quenched disorder.

On the theoretical side, microscopic expla-
nation of the disorder-free spin-glass transi-
tion remained a big challenge for more than 30
years. The principal magnetic interaction in
the pyrochlore oxide Y2Mo2O7 is the antifer-
romagnetic interaction between the magnetic
moments of the Mo ions sitting on verticies of
the pyrochlore lattice. It has been established
that the purely antiferromagnetic Heisenberg
spin model on the pyrochlore lattice exhibits
no transitions down to T = 0 because of the
very strong geometrical frustration [26, 27].
This is remarkable given that the system is
three dimensional. Coming back to the exper-

imental system, this observation means that
the model is too crude to capture the real sys-
tem which exhibits a spin-glass transition. In
order to explain the spin-glass transition of the
Y2Mo2O7 system, previous theoretical stud-
ies assumed the presence of some amount of
quenched disorder [28, 29]. However, from the
mean-field theoretical point of view, disorder-
free spin-glass transitions are possible [15].
Albeit in a somewhat artificial case with a
highly non-linear interaction , where the model
is built to describe an optimization problem
like the graph coloring with continuous col-
ors, a 2nd order disorder-free spin-glass tran-
sition involving full replica symmetry breaking
emerges without passing through the super-
paramagnetic phase has been found (See sec.
10 of [15]).

The purpose of the present work is to
uncover the microscopic mechanism of the
disorder-free spin-glass transition observed in
the pyrochlore magnet. Our key observation
in the present work [1], which is motivated
by a recent experiment [23], is that in the py-
rochlore oxides, not only the spins but also the
orbitals (lattice displacements) exhibit glass
transitions simultaneously - spin-orbital glass
transition. In the following, we first explain
our theoretical model and then present our re-
sults obtained by extensive Monte Carlo sim-
ulations at ISSP.

2 Model

We consider two kinds of dynamical variables
associated with the Mo4+(4d2, S = 1) ions
which sit on the vertices i = 1, 2, . . . , N of
the pyrochlore lattice. The first is the classical
Heisenberg spin Si = (Sxi , S

y
i , S

z
i ) normalized

as |S| = 1 which represents the magnetic mo-
ments of the Mo ion.

The second is the ’displacement’ of the Mo
ions σi = (σi,x, σi,y, σi,z). The recent exper-
iment [23] suggests that the pyrhocolore lat-
tice is distorted by displacements of the Mo
ions. The displacement of a vertex (the Mo
ions) take place along the lines connecting the
two tetrahedra that share the vertex. Thus
the displacements of the vertices of a given
tetrahedron are either pointing toward or away
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Figure 1.7: Frustrated lattices
(a): Ising spins with antiferromagnetic interactions on a triangle (top) and a tetrahedron (bottom). (b):
Lattices made of simplexes.

1.2 Geometrical Frustration

In this section, we review some basic aspects of geometrical frustration in some representative magnetic
systems [29]. First of all let us note that their thermodynamic properties are unusual. In ordinary systems,
the entropy decrease monotonically by lowering the temperature and the system finally reach the ground state
where the energy is the lowest and the entropy becomes 0, satisfying the third law of thermodynamics. In this
process, a phase transition may take place from a disordered phase to an ordered phase, e.g. ferromagnets
and crystals. On the other hand, strongly frustrated systems may not exhibit any long-ranged order even
at temperatures lower than the energy scale of the interaction and opens various possibilities of unexpected
behaviors at low temperatures. In particular, some geometrically frustrated spin system shows the disorder-
free spin glass transition whose microscopic mechanism has not been understood yet. The goal of this thesis
is to solve this problem for the case of a pyrochlore magnet Y2Mo2O7.

Geometrical frustration in spin systems means a situation where spins in the system cannot find a config-
uration which fully satisfies all the interactions. The simplest example is the case where three Ising spins on
the vertex of a single triangle interact with each other antiferromagnetically (See Fig. 1.7 (a)). If we put an up
spin on the site 1 and a down spin on the site 2, the remaining spin on the site 3 cannot satisfy antiferromag-
netic couplings 1-3 and 2-3 simultaneously. This frustrated situation can be easily generalized to simplexes
including triangles, tetrahedra, e.t.c with spins put on the vertexes and antiferromagnetic interactions along
the edges.

Now we can consider extended networks made of such simplexes, such as the triangular lattice, kagomé
lattice and pyrochlore lattice with antiferromagnetic coupling on the edges (See Fig. 1.7 (b)). The important
common feature is that they are corner sharing: adjacent simplexes are connected to each other only through
their conners.
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Figure 1: Spins on deforming pyrhoclore lattice. (a): Pyrhoclore lattice. (b): O2 ions and
magnetic Mo4+ ions around the i site, where the numbers 1 − 4 are the sublattice indices of
Mo4+ ions. Red and blue dashed circles represent the positions of the Jahn-Teller distorted i
ion. Spins on a pair of Mo4+ ions (i, j) interact through the O2 ion as shown in the inset panel,
where alpha is the Mo-O-Mo angle and r̂ij is the unit vector in the i → j direction. (c): Ice-type
displacements of the Mo tetrahedron. The different color bonds represent different exchange
interactions. (taken from [1, 2])

from the center of the tetrahedron. Further-
more, the experiment suggests that the dis-
placements follow the ’ice-rule’ [30] : the ’2-in-
2-out’ structure (see Fig. 1 (d)). As suggested
by the experiment, we parametrized the dis-
placements as σi = σiêν . Here we introduced
an Ising variable σi = ±1 to represent ’in’
and ’out’ displacements depending on êν which
is a unit vector in the [111], [11̄1̄], [1̄11̄] and
[1̄1̄1] directions respectively for the sub-lattices
ν = 1, 2, 3, 4 which the i-th spin belongs to (See
Fig. 1.(b)). The microscopic mechanism of the
peculiar displacements is presumably a Jahn-
Teller effect: the displacements break the 3-
fold rotational symmetry of the trigonal crystal
field for the Mo ions resulting in the splitting
of its e′g orbital [3]. Thus we regard σi as the
variable which represents the configuration of
the orbital of the Mo ion.

Our effective model for the pyrhoclore mag-
net Y2Mo2O7 is given by the following effective
Hamiltonian,

H =
∑

<ij>

Jσi,σjSi · Sj − ε
∑

<ij>

σi · σj (ε > 0)

(1)

with

Jσi,σj = J [1 + δ(r̂ij ·σi + (−r̂ij) ·σj)] (δ > 0),
(2)

The 1st term of Eq. (1) describes the ex-
change interaction between the spins on the
nearest-neighbour sites < i, j > on the pyrho-
clore lattice. The exchange interaction Eq. (2)
between the spins on the i-th and j-th Mo ions,
with the energey scale J(> 0), is mediated by
the O ion and depends on the angle α of the
Mo-O-Mo bond. (see Fig. 1 (b)(c)) Thus the
exchange interaction depends on the displace-
ments σi and σj of the Mo ions. This form
is constructed in a way to reproduce the val-
ues of the effective interactions derived micro-
scopically from the perturbation process on a
Kanamori-type of Hamiltonian [1, 2]. More-
precisely we parametrize it as Jσi,σj = (1 +

2δ̃)J (in, in), J (in, out), (1− 2δ̃)J (out, out),
where δ̃ =

√
6δ/3.

The 2nd term of Eq. (1) represents the elas-
tic energy of the Mo4+ displacements. The
elastic energy is minimized if the ice-rule is sat-
isfied.

There are three parameters in this system;
T̃ = kBT/J is the dimensionless temperature,
ε̃ = ε/3J the ratio of the energy scales between
the exchange interaction and the elastic energy
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of the displacement, and δ̃ =
√
6δ/3 is the am-

plitude of the displacement (hereafter we call
them simply as T, ε, δ). At ε → ∞, the lattice
distortion becomes static.

Finally let us note what happens if we switch
off the coupling between the spins and orbitals
(lattice displacements) δ = 0. Then our system
is decoupled into (1) the spin part with purely
antiferromagnetic interactions [26, 27] and (2)
the orbital (lattice) part with pure ’spin-ice’
type interaction [30, 31]. Both of them have es-
sentially flat energy landscape so that the two
degrees of freedom remain disordered down to
T = 0.

3 Simulation Methods

In order to perform simulations in equilib-
rium, we combined the following methods in
our Monte Carlo simulations.

Single spin update: The usual single spin
updates by the conventional Metropolis algo-
rithm is employed for the Ising variables σi =
±1 (i = 1, 2, . . . , N).

Loop update method: We also adopted a
nonlocal update method called the loop update
algorithm, used to simulate spin-ice systems
[32], to for the Ising variables σi.

Monte Carlo reflection method: For the
Heisenberg spins Si (i = 1, 2, . . . , N), we used
the single spin updates by the Metropolis re-
flection method [33].

Over-relaxation method: We also used
the over-relaxation method to update the
Heisenberg spins. [34]

Replica exchange method: On top of the
above methods we used the replica-exchange
method [35] to accelerate the equilibration of
the whole system.

We consider the periodic systems of cubic
geometry consisting of L3 unit cells with to-
tally N = 16L3 spins, and perform 120 sta-
tistically independent runs for the system size
L = 4, 5, 6, 8, evaluating the averages and
mean-squared errors of observable. In the fol-
lowing analysis, we mainly focus on a repre-
sentative system at δ = 1.5, ε = 0.6.

� = 0. Then our system is decoupled into (1)
the spin part with purely antiferromagnetic in-
teractions [26, 27] and (2) the orbital part with
pure ’spin-ice’ type interaction [31, 32]. Both
of them have essentially flat energy landscape
so that the two degrees of freedom remain dis-
ordered down to T = 0.

3 Simulation Methods

In order to perform simulations in equilbrium
we combined the following methods in our
Monte Carlo simulations.

Single spin update: The usual single spin
updates by the conventional Metropolis algo-
rithm is employed to update the Ising variables
�i = ±1 (i = 1, 2, . . . , N).

Loop update method: We also adopted a
nonlocal update method called the loop update
algorithm, used to simulate spin-ice systems
[33], to update the Ising variables �i.

Monte Carlo reflection method: To up-
date the Heisenberg spins Si (i = 1, 2, . . . , N),
we used the single spin updates by the
Metropolis reflection method [34].

Over relaxation method: We also used
the over relaxation method to update the
Heisenberg spins. [35]

Replica exchange method: On top of the
above methods we used the replica exchange
method [36] to accelerate the equilbration of
the system.

4 Results

4.1 A simple analysis of the energy
landscape

As we mentioned in the end of sec. 2, the en-
ergy landscape of our system becomes essen-
tially flat if we switch o↵ the coupling between
the spin and orbital degrees of freedom � = 0.
Here let us show a result of a simple quench ex-
periments to obtain some insight on how the
energy landscape changes in the presence of the
coupling. First we generated ’spin-ice’ config-
urations of �i’s randomly. Note that any of
them minimize the 2nd term of the Hamilto-
nian Eq. (1). Second, we performed a simple
energy descent simulation with respect to the
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the coupling � = 0 changes into complex one
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variance of the energy between di↵erent energy
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1st term of the Hamiltonian Eq. (1) by zero
temperature, greedy Monte Carlo updates of
the spins. Repeating this procedure we ob-
tained a large number of energy minima of var-
ious energies E. In Fig. 2 (b) we display the
variance of the energy Vspin(E) = 〈 E2 〉 � 〈 E 〉 2
between di↵erent realizations of the spins with
a common spin-ice like orbital configuration
(averaged over di↵erent realizations of such or-
bitals). Here 〈 . . . 〉 represent the average over
di↵erent realizations of the spins with a com-
mon orbital configuration and . . . represents
the average ovber di↵erent realizations of the
orbitals. In (c) we show the corresponding
one to measure the fluctuation between dif-
ferent relizations of the orbitals Vlattice(E) =

〈 E2 〉 � 〈 E 〉 2
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Figure 2: Energy landscape. (a): Schematic
picture of energy landscape. The essen-
tially flat energy landscapes (with many en-
ergetically degenerate minima) of the spins
(left/top) and orbitals (left/bottom) in the ab-
sence of the coupling δ = 0 change into a com-
plex one in the presence of the coupling δ > 0
(right). (b),(c) variance of the energy between
different energy minima obtained by quench
experiments (taken from [2])

4 Results

4.1 A simple analysis of the energy
landscape

As we mentioned at the end of sec. 2, the en-
ergy landscape of our system becomes essen-
tially flat (with many energetically degener-
ate minima) if we switch off the coupling be-
tween the spins and orbitals (lattice displace-
ments) , i. e. δ = 0. Here let us show the re-
sult of a simple quench experiment which pro-
vides some insights on how the energy land-
scape changes in the presence of the coupling
δ > 0. First we generated ’spin-ice’ config-
urations of σi’s randomly. Note that any of
them minimizes the 2nd term of the Hamilto-
nian Eq. (1). Second, we performed a simple
energy descent simulation with respect to the
1st term of the Hamiltonian Eq. (1) by zero
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temperature, greedy Monte Carlo updates of
the spins with orbitals σi being fixed. Repeat-
ing this procedure we obtained a large number
of energy minima of various energies E. In
Fig. 2 (b) we display the variance of the en-
ergy Vspin(E) = 〈E2〉 − 〈E〉2 between different
realizations of the spins with a common orbital
(lattice) configuration (averaged over different
realizations of such orbitals). Here 〈. . .〉 repre-
sents the average over different realizations of
the spins with a common orbital (lattice) con-
figuration and . . . the average over different re-
alizations of the orbitals. In Fig. 2 (c) we show
the corresponding one to measure the fluctu-
ation between different realizations of the or-
bitals (lattice) Vlattice(E) = 〈E2〉− 〈E〉2. Both
(b) and (c) show that the variance grows with
the system size L suggesting lugged, complex
energy landscape.

4.2 Critical slowing down without
long-ranged ordering

By lowering the temperature we observed that
the dynamics of both the spins and orbitals
(lattice displacements) slow down significantly.
In Fig. 3 (a)-(b) we display the time autocorre-
lation functions of the spins Cs(t) and orbitals
Cσ(t) plotted against time t. Here we used
’single spin updates’ for the spins and orbitals
to measure the dynamical observables, start-
ing from the initial configurations equilibrated
using all protocols listed in sec 3. As shown in
(c)-(d), the relaxation times grow in lowering
the temperature following a power law. The
independent power-law fits on the two observ-
ables suggest a common critical temperature
Tc ∼ 0.07 with different exponents zν ∼ 4.2
(orbital) and zν ∼ 3.5 (spin). As shown in (e)-
(f) the auto-correlation functions follow scaling
laws in terms of scaled times. We have checked
that finite-size effects of the auto-correlation
function is negligible within the temperature
and time scales shown in the Figure. We have
found that the same type of scaling holds for
ε = 0.65, with Tc ∼ 0.086 and almost the same
exponents as obtained above [2, 3].

As shown in Fig. 4, the structure factor
of the spins Ss and orbitals (lattice displace-
ments) Sσ show no hints of long-range order-
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(a): Spin auto-correlation function. (b): Orbital auto-correlation function. (c): Typical relaxation time
of spins. (d): Typical relaxation time of distortions. The black solid lines in the figure (b) and (d) de-
note the fits by ⌧ = A(T Tc)
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(4.27(31), 0.0686(5), 3.55(4)) by using the least squares method. (e), (f): Scaling plots of auto-correlation
functions using their relaxation times. The solid lines represent the exponential fits.

Figure 3: Autocorrelation functions and relax-
ations times of the spins and orbitals. L = 6,
ε = 0.6. (taken from [1])

ing. Some pinch points can be seen in Sσ,
for example at (1/2, 1/2, 1/2), at low temper-
atures as well known in spin-ice systems [31].

To summarize the above observations sug-
gests a simultaneous, 2nd order glass transi-
tions of the spins and orbitals (lattice displace-
ments) at a common temperature, into a new
glass phase - spin-orbital glass phase, which
emerges directly from the high temperature
paramagnetic (liquid) phase.

4.3 Non-linear susceptibilities

The signatures of the spin-orbital glass can be
detected by observing non-linear susceptibili-
ties of the two degrees of freedom. As shown
in Fig. 5, the non-linear susceptibilities com-
puted using fluctuation formulae (see [1] for
the details) at lower temperatures grow nega-
tively rapidly when increasing the system size
L. This observation provides an interesting
suggestion for experiments: by observing not
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Figure 3.9: Structure factors for L = 6, ✏ = 0.6 above Tc (T = 0.4) in the left side and below Tc
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(a) and (b) show the spin structure factor Ss(0, h, l) and the orbital structure factor S
(1)

(0, h, l), respectively.

(c) and (d) show the spin structure factor Ss(h, h, l) and the orbital structure factor S
(2)

(h, h, l), respectively.
Figure 4: Heat maps of the structure factors
of the spins and lattice displacements. L = 6,
ε = 0.6 above Tc (T = 0.4) in the left side and
below Tc (T = 0.0625) in the right side. (taken
from [1])

only the usual magnetic non-linear suscepti-
bility, which is used often to study conven-
tional spin-glasses [4, 6, 7], but also dielec-
tric non-linear susceptibility, the simultaneous
spin-orbital glass transitions suggested by the
present work may be detected experimentally.

4.4 Static or dynamic distortions?

In our study we regard the lattice distor-
tions (orbitals) as dynamical degrees of free-
dom rather than as frozen-in, static quenched
disorder. But by increasing the energy scale of
the lattice displacements given by the parame-
ter ε in Eq. (1), one would wonder whether the
lattice displacements can freeze independently
from the spins at higher temperatures. If this
happens, the spin-glass transitions of a con-
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(a), (b): Size dependence of magnetic and dielectric nonlinear susceptibilities. The dashed line represents
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of the absolute values of the nonlinear susceptibilities.

Figure 5: Non-linear susceptibilities of the
spins and orbitals (lattice displacements). ε =
0.6. Panels (a),(c) display the non-linear sus-
ceptibilities of the spin while (b),(d)display
the non-linear susceptibilities of the lattice dis-
placements (orbitals). (taken from [1])

ventional type, i. e. the one due to quenched
disorder, may take place at a lower tempera-
ture.

To get some insight into this issue within
the available computational resources, we an-
alyzed the heat capacity C and the fraction P
of the tetrahedra which satisfies the ice rule
at various values of ε. At ε = 0.6, 0.65, for
which we have determined the critical temper-
ature of the spin-orbital glass transition, we
found that the heat-capacity exhibit a peak at
slightly higher temperatures, similarly to the
case of the conventional spin-glasses [4] and
the experimental result in the Y2Mo2O7 sys-
tem [36]. We have checked that the finite-size
effects of the heat capacity are very weak [1]).

As shown in Fig. 6, the heat-capacity exhibit
an additional peak at a higher temperature at
larger values of ε > 1.0. The peak at the
higher temperatures appears to follow the peak
of dP/dT . This observation suggests that at
larger values of ε, the liquid state of the lattice
distortions exhibits a smooth crossover from
purely random one to more spin-ice like one
at higher temperatures. On the other hand,
the other peak of the heat capacity located at
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Figure 6: Heat capcity C and fraction P of tetrahedra which satisfy the ice-rule. L = 5. (a)-(c)
for 0 < T < 0.3 (d)-(f) for a wider temperature range 0 < T < 0.8. (taken from [1])

the lower temperatures tend to saturate to a
finite temperature T ∼ 0.16 by increasing ε.
Very importantly we confirmed that the orbital
degrees of freedom remain dynamically fluctu-
ating between the intermediate temperatures
between the higher and lower peak tempera-
tures of the heat-capacity [2, 3]. This means
that the orbitals do not produce the putative
static quenched disorder for spins but remain
dynamical. We consider that the spin and or-
bital degrees of freedom interact cooperatively
at the energy scale corresponding to the lower
peak temperature and exhibit the simultane-
ous glass transition at that energy scale.

5 Summary and Outlook

To summarize we constructed a theoreti-
cal model to describe the spontaneous glass
transition observed in the pyrochlore oxide
Y2Mo2O7 and performed extensive Monte
Carlo simulations of the model. Our results
strongly suggest a new type of glass transition
- spin-orbital glass transition.

There are numerous possibilities for further
works. Exploration of the parameter space,
especially along the ε-axis, should be done
to clarify to what extent our present scenario
holds. Construction of a mean-field theory [37]
would provide a useful guideline in this respect.

The criticality of the spin-orbital glass transi-
tion and its universality, consistency with the
experimental results [19, 20, 25], should be ex-
amined by approaching more closer to the crit-
ical temperatures.
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