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INTRODUCTION

More than six decades have passed since

Anderson’s seminal paper on localisation was

published[1]. During the subsequent decades, there

have been numerous important discoveries includ-

ing weak localisation, universal conductance fluc-

tuations, and the scaling theory of localisation[2].

Localisation phenomena are observed not only in

electron systems, but also in optical [3–9], acous-

tic [10–12], and cold atom systems [13–18].

Since the proposal of the scaling theory of

localisation[19–23], determining the critical be-

havior of the localisation-delocalisation transition,

which is usually referred to as the Anderson tran-

sition (AT), has continued to attract considerable

attention. Depending on the symmetry of the

Hamiltonian, systems are classified into orthogo-

nal, unitary and symplectic symmetry classes, cf.

the classification of random matrices[24, 25]. This

classification was extended to include three classes

with chiral symmetry[26, 27], and four classes with

particle-hole symmetry[28]. These ten classes have

also proven useful in the discussion of whether or

not there is a topological phase and, if there is,

what type of topological phase is realized, given

the symmetry class and the dimensionality of the

system.[29, 30]

In this activity report, we review the numerical

approach for the study of the Anderson transition,

and also another type of transition, the metal to

semimetal transition. We emphasize the impor-

tance of the concept of universality class, and the

scaling analysis of high precision numerical data.

The rest of this report is organized as follows. In

the next section, we explain the method, followed

by the results for our recent high precision stud-

ies of three dimensional (3D) Anderson transitions

with and without time reversal symmetry. We then

review the recent progress on the novel symmetry

classes with chiral and particle-hole symmetries as

well as the extension to non-Hermitian systems.

We conclude this report by discussing the metal

to semimetal transition and the scaling behavior of

the density of states.

METHODS

We start with the Anderson’s model of

localisation[1],

H =
∑
i

Ei |i〉 〈i| −
∑
〈ij〉

|i〉Vi,j 〈j| . (1)

where |i〉 is an orbital localised on site i of a 3D

cubic lattice. The first sum is over all sites on the

lattice and the second sum is over pairs of near-

est neighbours. The unit of energy is the near-

est neighbour transfer energy V = |Vi,j |, which we

set to unity V = 1. The orbital energies Ei are

assumed to be identically and independently dis-

tributed with a uniform distribution

p (Ei) =

{
1/W, |Ei| ≤W/2 ,

0, otherwise .
(2)

The parameter W determines the strength of disor-

der. The Hamiltonian commutes with the complex

conjugation operator, i.e. a time reversal opera-

tor that squares to +1, and this model belongs to

the orthogonal symmetry class [21, 22, 24, 25] (see

Table I).

We can extend the Anderson model by includ-

ing Peierls phases Vi,j = exp(iθi,j), which describe

magnetic fields, in the nearest neighbour hoppings.

Here θi,j with i > j are randomly and uniformly

distributed between [0, 2π] and and θi,j = −θj,i.
We call this the U(1) model. In this case the Hamil-

tonian does not commute with a time reversal op-

erator, and the model belongs to the unitary sym-

metry class.

Symmetry classification

We can further extend the model to include

spin/orbital degree of freedom by modifying Vi,j
and Ei and can realize different symmetry classes.
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Class Symbol TRS PHS CS

Unitary A No No No

Orthogonal AI 1 No No

Symplectic AII -1 No No

Chiral Unitary AIII No No Yes

Chiral Orthogonal BDI 1 1 Yes

Chiral Symplectic CII -1 -1 Yes

D No 1 No

BdG C No -1 No

DIII -1 1 Yes

CI 1 -1 Yes

TABLE I. Classification according to TRS, PHS and

CS. For TRS (PHS), 1 means CT = C (C′T = C′)

whereas -1 means CT = −C (C′T = −C′). BdG means

Bogoliubov-de Gennes class.

Using the unitary operators C,C ′ and P , we can

classify the Hamiltonian according to whether it

satisfies the following symmetries[29],

H = CH∗C−1 , (3)

for time reversal symmetry (TRS), and

H = −C ′H∗C ′−1 . (4)

for particle-hole symmetry (PHS). Systems with

TRS and PHS are further classified according to

whether C or C ′ is symmetric or antisymmetric.

We also have chiral symmetry

H = −PHP−1, P 2 = 1 . (5)

Note that chiral symmetry is automatic when we

have both TRS and PHS.

The classification[29] is summarized in Table I.

The transfer matrix method

One of the ways to study the Anderson transition

with high precision is to calculate the quasi-one

dimensional localisation length and perform a finite

size scaling analysis [31–35].

We consider a system with a square cross section

L×L, which we divide into layers labelled by their

x coordinate. Then the Schrödinger equation for a

state vector |Ψ〉 and energy E

H |Ψ〉 = E |Ψ〉 , (6)

is expressed in the following form(
ψx+1

Vx+1,xψx

)
= Mx

(
ψx

Vx,x−1ψx−1

)
, (7)

where ψx is the wavefunction on the slice at posi-

tion x,

(ψx)y,z = 〈x, y, z |Ψ〉 . (8)

Mx is the transfer matrix defined by,

Mx =

(
V −1x,x+1(E −Hx) −V −1x,x+1

Vx+1,x 0N

)
. (9)

For the Anderson model where we set Vi,j = −1,

we have(
ψx+1

−ψx

)
=

(
Hx − E 1N
−1N 0N

)(
ψx
−ψx−1

)
. (10)

Hx is the following sub-matrix of the Hamiltonian

(Hx)y,z,y′,z′ = 〈x, y, z| H| x, y′, z′〉 . (11)

0N and 1N are the N ×N (N = L2) zero and unit

matrices, respectively. The boundary conditions in

the transverse directions influence some of the criti-

cal behavior[36]. In this report, we impose periodic

boundary conditions in the transverse directions.

We set the energy at the band centre, i.e. E = 0.

We note that the transfer matrix must satisfy the

following relation

MT
x ΣMx = Σ , (12)

where

Σ =

(
0N −i1N
i1N 0N

)
. (13)

The wave-function amplitudes on the first two

layers are related to the wave-function amplitudes

on the last two layers as follows(
ψLx+1

−ψLx

)
= MLx · · ·M1

(
ψ1

−ψ0

)
, (14)

which involves the product of Lx independently

and identically distributed random matrices M =

MLx
· · ·M1.

The following limiting matrix exists[37],

Ω = lim
Lx→∞

lnMTM

2Lx
. (15)

The limit depends on the particular sequence of

random matrices, but the eigenvalues {γi} of Ω are

the same for all sequences (“all” means with prob-

ability one). These values are called Lyapunov ex-

ponents. From Eq. (12) these eigenvalues occur in
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pairs of opposite sign. It is usual to number them

as follows

γ1 > · · · > γN > γN+1 = −γN > · · · > γ2N = −γ1 .
(16)

This ± symmetry can be derived from Eq. (12).

To estimate the Lyapunov exponents we start

with a 2N × 2N orthogonal matrix, truncate the

matrix product at a very large but finite Lx, and

perform a QR decomposition of the result

QR = MQ0 . (17)

Here, Q0 and Q are a 2N × 2N orthogonal matrix

and R is a 2N × 2N upper triangular matrix with

positive diagonal elements. We then define

γ̃i =
1

Lx
lnRi,i . (18)

In the limit of infinite length

γi = lim
Lx→∞

γ̃i . (19)

For sufficiently large Lx, the {γ̃i} may be used to

estimate the Lyapunov exponents.

This method requires the simulation of a single

very long sample. While this method has been em-

ployed very successfully in numerous simulations

over the preceding decades, the calculations are in-

herently serial and do not allow us to take advan-

tage of massively parallel computers.

Parallel transfer matrix method

An alternative way is to simulate an ensemble

of much shorter samples and consider an ensemble

average. While for simplicity we consider cubes

with Lx = L, the method is also applicable when

Lx 6= L.

We note here that the matrix Q0 should be a

2N × 2N random matrix with orthogonal columns

sampled from a probability distribution that is in-

variant under convolution with the transfer matrix

distribution, i.e., with a distribution that is invari-

ant under the operation[38]

Q′R = MxQ . (20)

For such a distribution, it immediately follows that

[39]

γN = 〈γ̃N 〉 , (21)

where 〈· · · 〉 is the sample average. To generate such

matrices, we have found that the following proce-

dure works well. We start with Q0 given by the

2N -dimensional unit matrix,

Q0 = 12N (22)

and calculate

Q′R = Mq · · ·M1Q0 . (23)

The matrixR is then discarded and we setQ0 = Q′.

This procedure is then repeated a sufficient number

of times.

For a given L, we have found that, when a suf-

ficient number of randomizing multiplications are

performed, the distribution of γ̃N becomes inde-

pendent of the number of such multiplications[39].

We assess this by applying the Kolmogorov-

Smirnov test to the data for γ̃N with different

numbers of randomizing multiplications. For suf-

ficiently large number of randomizing multiplica-

tions we find that the Kolmogorov-Smirnov test

is unable to distinguish the distribution of γ̃N
obtained[39].

Fitting

Once we calculate γN , which is a function of the

cross section size L and the strength of disorder W ,

we define

Γ(W,L) = Lγ , (24)

and assume the scaling form,

Γ(W,L) = F (φ1, φ2, φ3, · · · ). (25)

Each scaling variable φi on the right hand side has

a power law dependence on L

φ1 ≡ u1(w)L1/ν ,

φ2 ≡ u2(w)L−y,

φ3 ≡ u3(w)L−y
′
,

· · · .

Here 1/ν (> 0) is the scaling dimension of the rel-

evant scaling variable and −y is the scaling di-

mension of the least irrelevant scaling variable;

· · · < −y′ < −y (< 0).

In this report, we use the disorder strength W to

tune the system through the transition. We denote

the critical disorder where the transition occurs as
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Wc. We define w ≡ (W − Wc)/Wc. The func-

tions uj(w) (j = 1, 2, · · · ) obey u1(w = 0) = 0 and

uj(w = 0) 6= 0 (j = 2, 3, · · · ). When w is suffi-

ciently small, the u’s can be expanded in powers of

w

ui(w) ≡
mi∑
j=0

bi,jw
j (26)

with i = 1, 2, · · · , b1,0 = 0, and bj,0 6= 0 (j =

2, 3, · · · )[35, 40]. When the φ’s are sufficiently

small, the universal scaling function F can also be

expanded[41]. We keep only the relevant scaling

variable φ1 and the least irrelevant scaling variable

φ2, while assuming the other irrelevant scaling vari-

ables to be zero, φ3 = · · · = 0. This should be rea-

sonable for w sufficiently small and L sufficiently

large. We expand F in terms of φ1 and φ2 as

F =

n1∑
j1=0

n2∑
j2=0

aj1,j2φ
j1
1 φ

j2
2 . (27)

To remove the ambiguity of fitting parameters, we

set a1,0 = a0,1 = 1. The parameter a0,0 is some-

times related to quantities of interest such as mul-

tifractal exponents[42], and we write it as Γc.

Whether the fit is plausible is determined by cal-

culating the goodness of fit probability. When the

fit is plausible, we check the stability of the fit

against changes of the range of data being fitted

and of the orders of the polynomial expansions.

Fig. 1 shows an example of simulation data Γ and

the results of the fitting.

The confidence intervals of the fitting parameters

are determined by Monte Carlo simulations. From

the fitting function Fi = F (Wi, Li) for the i-th data

(1 ≤ i ≤ ND, ND the number of data points), we

produce an ensemble of synthetic data sets with

Γ̃i = Fi + σi where σi is a random number, the

variance is the same as that of i-th data and the

mean zero. By fitting the synthetic data sets {Γ̃i}’s
we obtain the distribution of the critical parameters

such as Wc and ν, and estimate their confidence

intervals.

NUMERICAL STUDIES OF THE

ANDERSON TRANSITION

Wigner-Dyson classes

For the Wigner-Dyson (WD) classes, neither the

particle-hole (PHS) or chiral (CS) is present. There

are 3 WD classes (see Table I). Using System B

and simulating the Anderson and U(1) models, we

have determined the critical exponents of the 3D

orthogonal and unitary universality classes. The

results are summarized in Fig. 1 and Table II.

15.5 16.0 16.5 17.0 17.5

1.0

1.5

2.0
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3.0

G 

W

(a) 3D class AI

17.5 18.0 18.5 19.0 19.5 20.0
1.0

1.5

2.0

2.5

W

(b) 3D class A

FIG. 1. Γ as a function of the disorder strength W for

various cross section size L. (a) 3D class AI, where L =

12.18, 24, 32, 48 and 64. L = 96 is underway using new

System B. (b) 3D class A, where L = 4, 6, 8, 12, 16, 20

and 24. In the delocalised (localised) phase, Γ decreases

(increases) with L. (a) is taken from [39] and (b) from

[43].

The calculation time is proportional to the time

for the QR decomposition and the number of trans-

fer matrix multiplications. The dimension of trans-

fer matrix is proportional to L(d−1), hence QR de-

composition takes time proportional to L3(d−1), d

being the space dimension. In addition, to obtain

the same precision for larger L, we need to increase

the length Lx proportional to L. The calculation

time, therefore, is proportional to L3d−2. This

rapid increase of calculation time for higher dimen-
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class ν Γc Wc ND NP p -y

3D AI 1.572[1.566,1.577] 1.7372[1.7359,1.7384] 16.543[16.541,16.545] 117 7 0.5 –

3D A 1.443[1.437,1.449] 1.805[1.803,1.808] 1.805[1.803,1.808] 171 10 0.4 -3.1[-3.9,-2.4]

TABLE II. Results of the finite size scaling fits. Numbers are taken from Refs. [39, 43]. The systems sizes are

L = 24, 32, 48 and 64 for 3D orthogonal class (Anderson model, class AI), whereas they are L = 4, 6, 8, 12, 16, 20

and 24 for 3D unitary class (U(1) model, class A). The precision is expressed by 95% confidence intervals, ND

is the number of data points, NP the number of fitting parameters, and p the goodness of fit probability. For

the 3D orthogonal case, irrelevant scaling variables are not necessary. This is because we use only L ≥ 24 where

corrections to scaling are smaller than the precision of the data [35].

sion, at first sight, gives the impression that higher

dimensional simulation is almost impossible. How-

ever, the corrections to scaling are smaller in higher

dimensions, and the critical behavior in dimensions

higher than three has also been studied[43–45]. On

the other hand, the critical behavior of the quan-

tum Hall transition, which occurs in two dimen-

sions, is still controversial due to the very slowly

converging corrections to scaling[46].

Distribution of Kondo temperature

At the critical point, eigenstates exhibit multi-

fractality. This is reflected in the fluctuations of

the local density of states. As a result, when we

consider magnetic impurities, the Kondo tempera-

ture TK has a broad distribution. It has been pre-

dicted that the distribution of TK has a power law

tail at small TK with a universal exponent whose

value is related to the multifractal exponent η [47].

Using the kernel polynomial method [48], we cal-

culated the local density of states at the Anderson

transition, and determined the distribution of TK .

The massively parallel calculations on System B en-

abled us to reach the small TK needed to check the

analytic prediction [49]. Experimental verification

may be possible by comparing with measurements

of the temperature dependence of the magnetic sus-

ceptibility.

Beyond the Wigner-Dyson classes

Systems with CS/PHS symmetries have at-

tracted much attention recently, because many

of them are topological insulators or topological

superconductors[29]. We note that these unconven-

tional universality classes, i.e. classes other than

Wigner-Dyson, are realized only at E = 0.

One way to realize a model with chiral symmetry

is to set all the orbital energies Ei = 0, and con-

sider random hopping, Vi,j . Setting E = 0, we may

then vary the strength of the randomness of the

hopping and study the Anderson transition. This

approach, however, has proven to be difficult to

handle numerically because an unphysically large

disorder in the hopping is needed to cause an An-

derson transition[50].

Fixing the hopping and changing the diagonal

disorder is easier for numerical calculations. This

can be realized by considering, for example, the fol-

lowing Hamiltonian, which corresponds to 3D class

CI (see Table I). It is a two-orbital cubic lattice

model,

H ≡
∑
i,j

∑
d,d′

|i, d〉[H](i,d|j,d′)〈j, d′|

=
∑
i

{(
Ei + ∆

)(
|i, a〉〈i, a| − |i, b〉〈i, b|

)
+ t‖

(
|i, a〉〈i, b|+ |i, b〉〈i, a|

)
+ t⊥

∑
µ=x,y

∑
d=a,b

(
|i + eµ, d〉+ |i− eµ, d〉

)
〈i, d|

+ t′‖
(
|i + ez, a〉〈i, a| − |i + ez, b〉〈i, b|+ h.c.

)}
.

(28)

Here d, d′ = a, b denotes the orbital index, i ≡
(ix, iy, iz) with ex = (1, 0, 0), ey = (0, 1, 0) and

ez = (0, 0, 1) is the site index on the 3D cubic

lattice. The orbital energies at two different lat-

tice sites have no correlation; EiEj = δi,jW
2/12.

The model has a particle-hole symmetry (PHP−1 =

−H) as well as the time-reversal symmetry (H∗ =

H) with [P](i,d|j,d′) ≡ (−1)ix+iyδi,j [σy]d,d′ with

the 2 by 2 Pauli matrices, σx, σy and σz. Since

PT = −P, the Hamiltonian has a set of doubly

degenerate real-valued eigenstates at zero energy,

which results in the degeneracy of the Lyapunov

exponents at E = 0; the degeneracy is protected

by the particle-hole symmetry. For simplicity, we

set ∆ = t‖ = t′‖ = t⊥ = 1. As in the previ-
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ous subsection, the localisation length of the zero-

energy eigenstates along the z-direction (λz) is cal-

culated via the transfer matrix method. The peri-

odic boundary condition is imposed along x and y

directions. The density of states (DOS) of H with

finite disorder strength W is calculated in terms of

kernel polynomial expansion (KPE) method [48].

Due to the particle-hole symmetry, the calculated

DOS is symmetric about E = 0, while the DOS

at E = 0 remains finite at the critical point[51].

The exponent of 3D class CI thus estimated is

ν = 1.16± 0.02.

We can construct a similar Hamiltonian for the

3D class BDI, which is a model for disordered

nodal-line Weyl semimetal [51].

SUMMARY AND CONCLUDING

REMARKS

phase diagram

In this review, we focused on the Anderson tran-

sition at E = 0 (center of the band). Once we

know the critical disorder Wc ≈ 16.54 at E = 0

(see Table II), we can prepare thousands of delo-

calised (W < Wc) and localised (W > Wc) wave

functions. Then we can let a convolutional neu-

ral network (CNN) learn the features of these wave

functions[52, 53], and draw the phase diagram in

W − E parameter plane[54, 55].

Fig. 2(a) is an example. We take the training re-

gions indicated by the arrows in Fig. 2(a), and let

the neural network calculate the probability that

the states are delocalised in the rest of the parame-

ter region. We can also draw the phase diagram for

quantum percolation, where sites are present with

probability p and absent with probability 1 − p,

and all the orbital energies are set to zero, Ei = 0.

From the training in the Anderson model where

the transfer matrix method is applicable, we can

draw the phase diagram for the quantum perco-

lation problem where the transfer matrix method

is not applicable. Fig. 2(b) is the phase diagram

for the quantum percolation problem drawn by the

neural network trained using the Anderson model.

Beyond Hermitian classes

The symmetry classification according to TRS

and PHS can be extended to non-Hermitian (NH)

(a) 3D Anderson model

(b) 3D quantum percolation

FIG. 2. Phase diagram of 3D Anderson transitions.

(a) is for Anderson model. The green arrows in (a) in-

dicate the regions where the CNN is trained, whereas

the white dashed line and crosses indicate the phase

boundary estimated by other methods [56, 57]. (b) is

for site-type quantum percolation. The white dashed

line is from the estimates by Ref.[58], whereas the green

horizontal dashed line indicates the classical percola-

tion threshold. Taken from Refs.[54, 55].

systems [59]. For example, for TRS for Hermi-

tian systems we have H = CH∗C−1 = CHTC−1

[Eq. (3)], but for non-Hermitian systems there are

two possibilities,

H = CH∗C−1 , H = CHTC−1 . (29)

The latter symmetry is straightforwardly realized

for the Anderson model [Eq. (1)] by making the

orbital energies Ej random complex numbers. We

then have H = HT but H 6= H∗. The system is

called NH class AI†. Making the Ej complex in

the U(1) model realizes NH class A. The critical

behaviors have been shown to be different from the

Hermitian classes AI and A[60, 61] via the finite
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size scaling analyses.

These two classes are only a part of the 38 sym-

metry classes[59] in non-Hermitian disordered sys-

tems. The critical behavior for these classes is an

interesting topic left for the future.

Density of states scaling

So far, we have discussed the Anderson transi-

tion. There are other transitions in the same sym-

metry classes. For example, the semimetal to metal

transition[62] occurs in 3D Dirac and Weyl systems,

where the systems remains semimetal up to cer-

tain strength of disorder, then undergoes semimetal

to metal transition. (Further increase of disorder

leads to an Anderson transition.) Though the sym-

metry classes are AII (Dirac) and A (Weyl), the

critical behaviors described by the scaling of the

density of states[63, 64] is different from the An-

derson transition, i.e., both the exponent ν and the

dynamical exponent z differ from those of the An-

derson transition in the same symmetry class and

dimensionality.

Experiments

Interpreting the critical behavior found experi-

mentally in doped semiconductors remains difficult

because the role of the electron-electron interac-

tion, which may be relevant in the renormalisa-

tion group sense, is not well understood. In ex-

periments, the critical exponent s, which describes

how the zero temperature conductivity vanishes as

the critical point is approached from the metal-

lic side, is measured. This exponent is related

to the critical exponent ν by Wegner’s relation

s = (d − 2)ν[19]. As yet there is no agreement

between theory and experiment and understanding

the critical behaviour at the metal-insulator tran-

sition in doped semiconductors remains an open

problem[65, 66].

The quantum kicked rotor with suitable quasi-

periodic modulation exhibits an Anderson transi-

tion in the the same universality class as that in

Anderson’s model of localisation in 3D. This ex-

perimental realisation of the quantum kicked rotor

has provided an alternative avenue for experimen-

tal investigation of the Anderson transition.[13–15].

The value ν = 1.63±005 [15] found in these exper-

iments agrees well with our numerical estimate.

Light waves [3, 4, 7–9] and acoustic waves [10–

12] also localize and interaction effects play less of

a role. For small loss, such systems are described

by the 3D class AI. When the loss is not negligible,

the system might show the critical behavior in 3D

class AI†. Quantitative studies and detailed com-

parisons between theory and experiment are inter-

esting topics left for the future.
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