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Abstract

Theoretical approaches investigating the intrinsic
properties of permanent magnet materials are re-
viewed. Three topics, namely, possible maxi-
mum performance of magnetic materials, high-
throughput calculation surveying candidates for
the high-performance magnetic materials, and the
finite temperature magnetic properties, are dis-
cussed. Emphasis is put on the importance of large
scale first-principles as well as high-throughput cal-
culations.

1 Introduction

The properties featuring high-performance perma-
nent magnets such as Nd2Fe14B originate from
subtle combination of micro, macro and metal-
lographic structures. This means that intrinsic
properties of permanent magnet materials are not
directly reflected to the properties of permanent
magnets. On the other hand, it is also true that the
performance of a permanent magnet as a whole is
severely limited by the intrinsic properties of con-
stituent materials. For example, the upper bound of
coercivity is the magnetocrystalline anisotropy—
reality is that it is usually only 20∼30% of the
latter. Among those intrinsic properties, impor-
tant ones are, in addition to the magnetocrystalline
anisotropy, the magnetic moment and Curie tem-
perature. The higher the values, the better the
performance expected. The importance of first-

principle calculation arises here: although predict-
ing the properties of permanent magnets is very
difficult task, it would be still possible to predict
better materials for permanent magnets on the basis
of first-principles calculation. Also, the approach
is powerful to analyze the mechanism inherent to
certain specific electronic and magnetic properties.

In the past decade, many works based on first-
principles calculation have been done from the
above point of view [1]. There are two aspects
existing in those works: the first one is the accu-
mulation of results of first-principles calculations
and their analyses. The second is the development
of methodology that enables us to perform such at-
tempts. In this paper, we will present some of our
results as examples of the former, putting emphasis
upon the importance of the latter.

We first will discuss the possible maximum per-
formance of permanent magnet on the basis of the
first principles calculation [2]. In spite of the in-
tensive efforts, no essentially novel magnet show-
ing better performance than Nd2Fe14B magnet has
been so far invented. Then, one might question if
there exists any permanent magnet materials at all
superior to the already known ones. Or, might it be
better to proceed to other directions such as pursu-
ing magnets less expensive but with reasonable per-
formance, and hence, replacing ferrite magnets? In
answering this, we will show that there exists a pos-
sible maximum performance that we can expect for
permanent magnets. Fortunately, this maximum
has not be reached by currently used permanent
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magnet materials and it is worthwhile seeking fur-
ther possibilities.

One of ways to seek such possibilities may be
performing first-principles calculation over a wide
range of composition space of magnetic materi-
als. Since most of those materials contain more
than several elements, in many cases as solid so-
lutions, the procedure inevitably becomes a high-
dimensional search requiring high-throughput cal-
culations. A machinery based on the Korringa–
Kohn–Rostoker Green’s function method com-
bined with the coherent potential approximation
(KKR-CPA) is quite efficient for this purpose [3] .

For the high throughput calculations, it is desir-
able to perform calculations for many systems with
different compositions in parallel. We have devised
such a system, called HOFMAN, which realizes
this procedure for KKR-CPA efficiently and have
been applied to various systems. Some examples
will be given in a later section.

The problem arising in first-principles calcula-
tions of rare-earth permanent magnets is a treat-
ment of 𝑓 -states playing a main role in provok-
ing the magnetocrystalline anisotropy. In the local
density approximation (LDA), or the generalized
gradient approximation (GGA), the strongly local-
ized 𝑓 -states cannot be treated properly. So far, no
real solution for this problem exists. As a compro-
mise, one may use the exact-exchange [4] instead
of the LDA/GGA exchange. Since the 𝑓 -states
in rare-earth elements are sufficiently localized,
the exchange energy for 𝑓 -states may be replaced
with that of local 𝑓 -orbitals. This can be sim-
ply done by subtracting self-interaction from the
Hartree energy—self-interaction correction (SIC)
[5]—because the exchange in the present case is
mostly the self-exchange.

The permanent magnets in electric vehicles and
wind turbines are used mostly at temperatures 100∼
200◦ higher than the room temperature. Therefore,
the importance is on the performance at rather high
temperatures. Although finite temperature mag-
netic properties of materials is out of the scope
of Kohn–Sham scheme, we can still access this
problem through perturbative ways. Namely, we

can estimate the effects of low lying excitation by
constructing a low energy effective Hamiltonian
through DFT as a problem of the ground state of
constrained systems [6]. The results of such calcu-
lations give rise to a set of parameters for the ef-
fective Hamiltonian, from which we can obtain the
finite temperature electronic and magnetic proper-
ties.

There are several kinds of excitations that have
to be taken into account when discussing finite
temperature magnetic properties of magnetic ma-
terials. Among them are phonons and magnons
[7, 8, 9]. Usually, single electron excitations at
the Fermi surfaces do not contribute significantly
to the magnetic properties at the temperature range
below the Curie temperature. In the following we
neglect such excitations. The treatment of phonons
is the following: We apply a static approximation
for phonons and treat them as external field act-
ing on electrons. This problem can be treated in
the framework of DFT. The statistical average can
be taken, in principle, by performing a functional
integral with suitable probability weights. How-
ever, this being practically impossible, we further
introduce an approximation to make it tractable.
We employ a single-site approximation, where the
functional integral is reduced to a configuration
average using CPA. In this scheme, the effects of
phonons are nothing but those of random displace-
ments of atoms around their equilibrium positions.
The average displacements are estimated from ei-
ther the Debye model or first-principles phonon cal-
culations: no noticeaable difference between them
was found.

The treatment of magnons is somewhat subtle
because the motion of the magnetic moments has to
be separated from the electron degrees of freedom.
We rely on the fact that the time scale of local spin
fluctuations is much slower than that of remain-
ing dynamics. Then we can expand the magnetic
energy into the local spin fluctuations as

𝐸mag [𝑺(𝒓)] = −1
2

∬
𝑑𝒓𝑑𝒓 ′

𝑺(𝒓) 𝜒(𝒓)−1𝜒(𝒓, 𝒓 ′)𝜒(𝒓 ′)−1 𝑺(𝒓 ′), (1)

where 𝑺(𝒓) is the spin density, 𝜒(𝒓) and 𝜒(𝒓, 𝒓 ′)
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are the local and non-local susceptibilities, respec-
tively. Such an expansion can be performed in
the framework of constrained DFT as long as the
above separation of degrees of freedom and the
static approximation are employed. This provides
us with a low energy effective Hamiltonian of the
system, as is already mentioned. If the longitudinal
fluctuations neglected, it is nothing but the Heisen-
berg Hamiltonian. Now, we can take the same
approach as used for phonons: instead of random
displacement of atoms, random flipping of the lo-
cal magnetic moments with probability determined
self-consistently at each temperature is considered
within KKR-CPA.

We have studied the effects of phonons and
magnons on finite temperature magnetism, target-
ing at permanent magnet materials.

We discuss the possible maximum performance
of permanent magnets in Sec. 2. Several exam-
ples of high-throughput calculation are presented
in Sec. 3. Section 4 is devoted for the finite tem-
perature properties of magnetic materials under the
existences of phonons and magnons. We summa-
rize in Sec. 5.

2 Maximum performance of per-
manent magnet materials

We assume that 3𝑑 magnetic ions are the main ori-
gin of magnetic polarization (magnetization). On
the other hand, 4 𝑓 ions are of main concern for
the magnetic anisotropy energy (MAE) although
3𝑑–5𝑑 transition metal ions partly contribute to it,
in particular, at high temperature. For this reason,
we will discuss MAE in a somewhat different way
than we do for the magnetic polarization 𝐽S and
Curie temperature 𝑇C. The discussions are based
on all-electron first-principles electronic structure
calculations performed within the framework of the
local density approximation (LDA/GGA) of den-
sity functional theory (DFT). We used a KKR-CPA
package (AkaiKKR) [3], and for the calculation of
𝑇C, Liechtenstein’s method [10] was exploited.

Figure 1 shows the overall behavior of magnetic
moment 𝑀 (𝑎, 𝑍) per atom of 3𝑑 elements plotted

against the lattice constant 𝑎 and atomic number
𝑍 . The crystal structure is fixed to bcc. Here,
the fractional atomic number of a fictitious atom
is used: 𝑍 = 25, 26, and 27 corresponds to Mn,
Fe, and Co atoms, respectively. Whereas 𝑀 is a
decreasing function of 𝑍 for a large lattice constant
(𝑎 ∼ 3.2 Å), it shows a usual Slater-Pauling type be-
havior [11] for a lattice constant of bcc Fe (2.867 Å
at room temperature): it takes the maximum value
of 2.35 𝜇B/atom at 𝑍 = 26.2 and decreases to both
sides. The peak position shifts towards larger 𝑍
with decreasing lattice constant. Meanwhile, the
peak height decreases rapidly. These behaviors
are the results of the facts: (1) the position where
the transition from strong to weak ferromagnetism
takes place is shifted, and (2) the position where the
instability of ferromagnetism against volume col-
lapse takes place is shifted, both occurring when
atomic number decreases.

Figure 1: Magnetic moment per atom 𝑀 against
the lattice constant 𝑎(Å) and the atomic number 𝑍
of a fictitious atom

The behavior of saturation magnetic polariza-
tion 𝐽S shown in Fig. 2 does not obey that of the
magnetic moment. The most prominent feature is
that it has a dome-like structure appearing around
𝑎 = 2.65 Å and 𝑧=26.4, where 𝐽S takes the maxi-
mum value of 2.66 T. Such a feature is not seen in
𝑀 . We point out, not going into details, that this is
related to the fact that in the bcc structure, the in-
teratomic distance between nearest neighbor pairs
is rather small, forming a considerable bonding–
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antibonding splitting and the associated pseudo
gap. Unfortunately, the lattice constant � = 2.65 Å
is 7 % too small compared with the equilibrium
lattice constant of bcc Fe. It should be noticed that,
contrary to the behavior of the magnetic moment,
the magnetic polarization increases with decreas-
ing � up to the point where the magnetic state starts
to rapidly collapse.

Figure 2: Saturation magnetic polarization �S of
the system against the lattice constant � (Å) and
the atomic number � of a fictitious atom. The
ferromagnetic state is unstable in the region to the
left of the dashed line.

Magnetic polarization takes on a large value at
one of the corner points in the �-� plane, � = 25
and � = 3.2 Å, but this is not real. The truth
is that in a broad region of the �-� plane—the
region to the left of the dashed line in Fig. 2—
the ferromagnetic state is unstable as will be seen
below. If we combine this fact with the information
given by Fig. 2, we may conclude that a large �S

is expected only in the vicinity of the dome-like
structure seen in Fig. 2, and the upper limit of �S

would not exceed ∼ 2.7 T.
Figure 3 shows the overall behavior of magnetic

transition temperature �C. Here, we again see a
dome-like structure near � = 26.5 and � = 2.9 Å.
This position approximately coincides with the po-
sition of the similar dome-like structure in �S. This
indicates that if � = 26.5 and � = 2.9 Å is forced
by some means (crystal structure, chemical com-
position, pressure, temperature, etc.), �S ∼ 2.7 T

is achieved. �C drops rapidly toward the corner in
the �-� plane, � = 25 and � = 3.2 Å, where �C

becomes negative, meaning that the antiferromag-
netic state should be the ground state. Although the
region of stable ferromagnetism does not appear to
be extensive, there is hope in the fact that, in most
of the region where the ferromagnetism is stable,
�C is well above 1000 K, which is much higher
than the usual working temperature range. Now,
we may say that the upper limit of �C is ∼ 2000
K (if fcc structure were assumed, the upper limit
would be ∼ 1500 K).

Figure 3: Magnetic transition temperature �C

against the lattice constant � (Å) and atomic num-
ber � of a fictitious atom. The negative value of
�C means that the antiferromagnetic state is more
stable than the ferromagnetic state.

There are two origins of MAE: one is spin
orbit coupling and the other is magnetic shape
anisotropy. The magnetic shape anisotropy is
caused by the dipole interactions between two mag-
netic moments. In the case of rare earths, the for-
mer is the main origin of MAE and is well described
within each �� multiplet by the effective Hamilto-
nian given by �so = �� · �, where � = ±�/� is the
spin-orbit coupling constant for the ground state
�� multiplet. The plus sign is for the less-than-
half-filled � shell and vice versa; � is the single
electron spin-orbit coupling constant, � the num-
ber of unpaired electrons. For the 3�–5� cases,
we use the single electron spin-orbit interactions
given by �so =

∑
� ��ℓ� · �� , where the sum is over
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𝜁 (eV)
s p d f

Fe 8.18 0.231 0.068 0.001
Sm 10.0 1.36 0.218 0.163
Pt 44.2 2.72 0.762 0.001

Table 1: Absolute values of the single electron
spin-orbit coupling 𝜁 (eV) of element materials Fe,
Sm, and Pt. 𝜁 at the Fermi energy are given.

all electrons. Table 1 shows the values of the spin-
orbit coupling constant 𝜁 for some representative
elements.

Assuming that the orbitals are firmly bound
to the lattice, the upper limit of the magnetic
anisotropy constant 𝐾1 for Sm (Sm3+ in Sm-type
Sm element) estimated from the value of 𝜁 , together
with the values of ⟨𝐿⟩, is as large as∼ 1000 MJm−3.
The upper limit of𝐾1 for other lanthanides, if scaled
by the value of 𝐿, also would be similar to the Sm
case. This value obtained under the assumption
that the 4 𝑓 orbitals are firmly bound to the lattice,
however, seems too large: one order of magnitude
smaller, i.e., ∼100 MJm−3 would be realistic.

3 High-throughput calculation

The purpose of high-throughput calculation in the
present context is to generate data of intrinsic
properties of magnetic materials spreading over
multi-dimensional composition space. This en-
able us to construct permanent magnet materials
databases that might be used to find new can-
didates of high-performance permanent magnet
materials. Given a structure and a set of com-
ponents, e.g., Sm(Fe1−𝑥Co𝑥)12(N1−𝑦S𝑦), we typi-
cally need calculations for 100∼1000 different sys-
tems. Since these systems are compositionally dis-
ordered, usual band structure calculation is not sen-
sible. An efficient way to manage this problem is
to use the KKR-CPA method [3] , which can take
a configurational average of disordered systems
rather accurately. Unfortunately, the full-potential

scheme is not implemented in the present version of
KKR-CPA—full-potential KKR-CPA codes (FP-
KKR) exist but they do not suit the high-throughput
calculation because of the heavy computational de-
mands. On the other hand, the pseudo-potential
codes can calculate the ordered system quite effi-
ciently although their accuracy has to be checked
from time to time through comparisons with the
results obtained by other reliable method such as
FPKKR and FLAPW. Considering the above, one
of the practical ways to do is to combine KKR-CPA
and pseudo-potential codes: use pseudo-potential
codes for the end points, i.e., ordered alloys, of
composition space and use KKR-CPA to interpo-
late whole the region of composition space. A
computational system HOFMAN constructed un-
der such a strategy is now running.
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Figure 4: Magnetic polarization (T) (top) and 𝑇C

(K) (bottom) of Sm(Fe1−𝑥Co𝑥)12(N1−𝑦S𝑦).

An example of the usage of HOFMAN sys-
tem is seen in Fig. 4, where a new alloy system
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Sm(Fe1−𝑥Co𝑥)12(N1−𝑦S𝑦) is examined. The re-
sults show that the Curie temperature rises by re-
placing Fe with Co by ∼40% whereas it decreases
the magnetic polarization. On the other hand, re-
placing N with S turned out not to be promising as
for the magnetic properties.
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Figure 5: Magnetic polarization (T) (top) and
𝑇C (K) (middle), and 𝐾1 (MJ/m3) (bottom) of
Sm(Fe1−𝑥Co𝑥)12N𝑦 .

Another example is for Sm2(Fe1−𝑥Co𝑥)17N𝑦 ,

where the content of N 𝑦 takes 0 ≤ 𝑦 ≤ 3 (Fig.
5). Here the magnetic anisotropy constant 𝐾1 was
also calculated. In this case, 𝑇C monotonically
increases as the concentration of Co increases. Al-
though the addition of N lowers 𝑇C, it enhances
the uniaxial magnetic anisotropy 𝐾1. This fact was
already known for Sm2Fe17N𝑦 but addition of Co
further enhances this tendency is a new finding.

4 Finite temperature properties of
permanent magnet materials

There are many cases that there exist experimental
data of magnetic polarization 𝐽S at several different
temperatures around the room temperature. What
we would like to do is to estimate the temperature
dependence of 𝐽S in whole the range of temper-
ature below 𝑇𝐶 from these rather restricted data.
One of the ways to do this is the following: First,
the Curie temperatures, which are not necessar-
ily known experimentally, are estimated by fitting
the temperature dependence of magnetic moment
by Kuz’min’s empirical formula [12]. Meanwhile,
the theoretical Curie temperature and 0K magnetic
moment are obtained by first-principles calculation
using KKR-CPA. Then theoretical temperature de-
pendence of magnetization is obtained again using
Kuz’min’s formula. Finally, the temperatures are
scaled using experimentally estimated Curie tem-
peratures. Examples of such estimation of temper-
ature dependence of 𝐽S are depicted in Fig. 6 for
SmFe12 family with several different compositions.
The theoretical estimations reasonably fit the exper-
imental data and also provide the extrapolation to
the whole range of temperature.

Before entering the discussion of the tem-
perature dependence of magnetic properties in-
cluding the effects of phonons and magnons,
it might be useful to see the effects of
magnon excitations to the Curie temperature.
Such effects comes in through the parameters∬
𝑑𝒓𝑑𝒓 ′𝑺(𝒓) 𝜒(𝒓)−1𝜒(𝒓, 𝒓 ′)𝜒(𝒓 ′)−1 𝑺(𝒓 ′) = 𝐽𝑖 𝑗

in eq. (1). Here the integral are performed within
each atomic cell surrounding 𝑖-th or 𝑗-th atom.
There are two limiting cases in the calculations of
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𝐽𝑖 𝑗 : one is the calculation at the ground state and
another is the calculation above𝑇C where the direc-
tions of local moments align randomly without any
short-range order. Which is more realistic depends
on the characteristic of the spin-fluctuations. The
former is realistic for the system where the local
fluctuation of the magnetic moments does not play
a role. The latter is suitable for the opposite cases.
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Figure 6: Temperature dependence of magnetiza-
tion of various systems of SmFe12 family.

Figures 7 and 8 show the results of calculation of
𝑇C of 𝑅2(Fe,Co)14B (𝑅 = La, Ce,. . . , Lu, Y). The
results under the above two options are compared
with the experiments. For the Fe based cases, the
calculation assuming that the local fluctuation is
dominant (red) gives good agreement with the ex-
periments (blue) whereas the assumption that the
long range fluctuation determined𝑇C (green) seems
very reasonable for Co cases.

The above discussion is only for 𝑇C with
magnons excitations. For the finite temperature
properties below𝑇C and also with not only magnons
but also phonons need more elaobrate treatment as
mentioned in Sec. 1.

Table 2: Calculated 𝑇C of Nd2Fe14B
　 phonons only plus magnons
0K 1062K 561K

500K 1198K 548K

th]
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0

T C
 (K
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La Ce Pr Nd Sm Gd Tb Dy Ho Er Tm Yb Lu Y
Rare-earth elements

R2Fe14B
 Calc.
 Calc. lmd
 Expt.

Figure 7: Calculated𝑇C of 𝑅2Fe14B compared with
experiments.
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0
T C
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)

La Pr Nd Sm Gd Tb Y
Rare-earth elements

R2Co14B
 Calc.
 Calc. lmd
 Expt.

Figure 8: Calculated𝑇C of 𝑅2Co14B compared with
experiments.

It was fond that, in the case of bcc Fe, there is a
significant effect of electron–phonon scattering on
the Curie temperature 𝑇C, while that of magnons is
not prominent (not shown). On the other hand, the
effect of magnons, becomes remarkable in the case
of Nd2Fe14B permanent magnet materials. Some
examples of calculated 𝑇C of Nd2Fe14B are given
in Table 2. The first column indicates the tem-
perature in which the average displacement due to
phonons is calculated. The experimental value of
𝑇C is 585K.

Figure 9 shows the calculated magnetic polar-
ization of Nd2Fe14B. Both the effects of phonons
and magnons are included. The theoretical curve
shows a weak first-order transition at the magnetic
transition temperature, which occurs as a result
of electron–phonon coupling. The temperature is
scaled so that𝑇C reproduces the experimental value
of 585K although the scaling factor is close to 1.
The calculated results are fairly consistent with ex-
periments, is concluded.
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Figure 9: Calculated and experimental magnetic
polarization vs. temperature of Nd2Fe14B

5 Summary

We discuss the theoretical approached to investi-
gate the intrinsic properties of permanent mag-
net materials, focusing on three subjects: possi-
ble maximum performance of magnetic materials,
high-throughput calculation to survey the candi-
date of the high-performance magnetic materials
in multi-dimensional composition space, and the fi-
nite temperature magnetic properties. Admittedly,
we have not yet succeeded in inventing any new
permanent magnet materials that realize the perfor-
mance exceeding that of Nd2Fe14B, the best perma-
nent magnet materials so far known. However, we
put emphasis on the fact that the remaining com-
position space not yet searched is immensely large
and we still have much chance to get a leap. For
this, large scale first-principle calculation such as
reviewed here is one of most powerful approaches.
In addition, it is clear that schemes fully equipped
with machine learning technique provide us with
a complementary approach for the development of
new permanent magnet materials
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