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1 Introduction

Recently, materials informatics has established

an important position in materials science [1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. As a feature of ma-

terials science, it is not always easy to obtain

materials data whether by experiments or sim-

ulations. In contrast, when general machine

learning and artificial intelligence techniques

are applied to materials data, it is necessary

to use a large amount of data to gather mean-

ingful results. Therefore, to achieve success in

materials informatics research, it is necessary

to use some ingenuities in treating small-data

problems. One strategy to overcome small-

data problems is to start with a small amount

of data and gradually increase the amount of

data with the help of machine learning. This

is called black-box optimization. One of the

typical techniques is Bayesian optimization.

In this paper, we introduce a Bayesian opti-

mization method that can effectively select the

next candidate for an experiment or simulation

with the help of machine learning. We also

give examples of its application in materials in-

formatics. In Bayesian optimization, Gaussian

processes are used as a machine-learning sur-

rogate model, which is constructed to predict

the target material properties using already

obtained materials data. Based on the predic-

tions, the next candidate for the experiment

or simulation is selected to improve the mate-

rials properties. By repeating these processes,

training and selection using machine learning,

materials with better properties can be found

using the fewest number of experiments or sim-

ulations. Recently, many successful examples

of Bayesian optimization have been reported

in materials science [12, 13, 14, 15, 16].

2 Algorithm of Bayesian opti-

mization

2.1 Problem setting

Let us explain an algorithm for Bayesian op-

timization. In materials research, the vari-

ables that describe materials are called descrip-

tors, and include compositions, structures,

processes, and simulation parameters. A de-

scriptor vector with dimension d is denoted by

x ∈ Red. Additionally, the materials property

is expressed as y which is obtained through ex-

periments or simulations when x is given. Ev-

idently, the relationship between x and y can-

not be explicitly expressed as a simple func-

tion in materials science. Thus, in materials

informatics, we replace this relationship with

a machine learning surrogate model. That is,

the machine-learning surrogate model fML(x)
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is introduced, and y for any x is approximately

obtained as follows:

y � fML(x). (1)

Using such a machine learning surrogate

model, Bayesian optimization can find x with

the better material properties y among the

many candidates of x. For example, a prob-

lem may be set up for Bayesian optimization

as follows:

• There are N candidate materials ex-

pressed by {xi}i=1,...,N .

• Among {xi}i=1,...,N , we search for materi-

als with a better material property value

y. In addition, the number of experiments

or simulations to obtain y is minimized as

much as possible.

• Experiments or simulations for M can-

didate materials have been completed,

and M material properties have been ob-

tained. Currently, we have dataset D =

{xk, yk}k=1,...,M .

• We select the next candidate material ex-

pressed by xM+1 using fML(x). That is,

the surrogate model is trained using the

training data D, and the potential of a

material is evaluated by using the trained

model. To evaluate the potential, the ac-

quisition function is introduced. Here,

the Bayesian optimization uses a Gaussian

process as a surrogate model.

• After evaluating the value of yM+1 on

the selected material xM+1 by experi-

ments or simulations, the M + 1-th pair

(xM+1, yM+1) is added to D. Then, the

next candidate material is selected by us-

ing the updated surrogate model.

The Bayesian optimization cycle is shown in

Fig. 1.

Figure 1: Flow of Bayesian optimization. In

step 2, the Gaussian process (GP) regression is

trained by the already obtained data and the

next point is selected based on the acquisition

functions. In step 3, the materials property

of the selected material is evaluated by exper-

iments or simulations. By repeating of steps 2

and 3, we select better materials.

2.2 Gaussian process

In the Gaussian process which is used as

the surrogate model in Bayesian optimization,

when the training data D are given, the con-

ditional probability distribution for y at x is

given by

P (y|D) = N(µ(x), σ(x)). (2)

Here, µ(x) is the mean of the predicted value

by the Gaussian process regression when x is

the input, and the variance σ(x) is the uncer-

tainty, when D = {xk, yk}k=1,...,M . These are

defined as follows:

µ(x) = k�(K + λI)−1y, (3)

σ(x) = k(x,x) + λ− k�(K + λI)−1k,

(4)

where λ is the hyperparameter, I is the iden-

tity matrix, and y = (y1 · · · yM )�. In addition,

Activity Report 2021 / Supercomputer Center, Institute for Solid State Physics, The University of Tokyo

33



k and K are defined as follows:

k =
(
k(x1,x) · · · k(xM ,x)

)⊤
, (5)

K =

 k(x1,x1) · · · k(x1,xM )
...

. . .
...

k(xM ,x1) · · · k(xM ,xM )

 ,

(6)

where k(xi,xj) is a Gaussian kernel function,

k(xi,xj) = exp

[
− 1

2γ2
∥xi − xj∥2

]
. (7)

Here, γ is a hyperparameter.

2.3 Acquisition functions

To evaluate the potential of the material,

acquisition functions are introduced. There

are many types of acquisition functions, such

as the probability of improvement (PI) [17],

the expected improvement (EI) [18], and the

Thompson sampling [19]. Firstly, the PI rep-

resents the probability of exceeding the cur-

rent maximum value of the already obtained

y: ymax = maxk yk. This score is defined as

follows:

PI(x) = P [y(x) > ymax]

= F (t(x)) , (8)

where F (·) is the cumulative distribution func-

tion of N (0, 1) and t(x) = (µ(x)−ymax)/σ(x).

Here, µ(x) and σ(x) are obtained using the

Gaussian process.

Next, the EI is the expected value of how

much ymax updates when x is observed. This

is defined as

EI(x) = E [max(y(x)− ymax, 0)]

= σ(x) [t(x)F (t(x)) + f(t(x))] ,

(9)

where f(·) denotes the probability density of

N (0, 1).

Finally, we consider Thompson sampling,

and the acquisition function using Thompson

sampling is as follows:

TS(x) = w∗⊤ϕ(x). (10)

Here, a coefficient vector w∗ was sampled ac-

cording to the posterior distribution in the

Gaussian process. ϕ(x) is a random feature

map and ϕ(x)⊤ϕ(x) expresses the Gaussian

kernel, approximately.

In Bayesian optimization, the material ex-

pressed by x with the largest value of the ac-

quisition function is selected as the next can-

didate for the experiment or simulation. By

using these acquisition functions, we can in-

corporate into the selection process not only

the predicted value µ(x) but also information

on the uncertainty of the prediction σ(x). This

makes the selection more effective than if the

next candidate is randomly selected.

3 PHYSBO package

To realize fast and scalable Bayesian opti-

mization, we developed PHYSBO (optimiza-

tion tools for PHYSics based on Bayesian Op-

timization) [20, 21] which is a Python library

developed under the support of the “Project

for advancement of software usability in mate-

rials science” by the Institute for Solid State

Physics, University of Tokyo. In PHYSBO, a

random feature map, Cholesky decomposition,

and Thompson sampling are used to acceler-

ate the calculations required for Bayesian op-

timization. Note that PHYSBO is an updated

version of COMBO [22] and includes some new

functions.

The following are the features of PHYSBO.

• PHYSBO can be used to find better solu-

tions for both single and multi-objective

optimization problems.

• At each cycle in Bayesian optimization, a

single proposal or multiple proposals can

be selected.

• Parallel calculation can be performed.

The results of parallelization performance

are shown in Fig. 2.

• Detailed manual is provided.
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PHYSBO is available from https://github.

com/issp-center-dev/PHYSBO.

Figure 2: Selection time as a function of the

number of candidate data values for differ-

ent scores depending on the number of cores.

As the number of cores increases, the selec-

tion times steadily decrease. Computing time

is measured using CPU: 2.3 GHz Quad Core

i7. Panels reproduced with permission from

Ref. [20].

4 Examples in materials sci-

ence

In this section, some results obtained by per-

forming Bayesian optimization in materials sci-

ence are introduced. In Secs. 4.1-4.3, single-

objective problems are the focus for discussion.

Sections 4.1 and 4.2 consider the cases where

Bayesian optimization is combined with exper-

iments, and in Sec. 4.3, the results where sim-

ulation data is used are introduced. In addi-

tion, the multi-objective optimization results

are presented in Sec. 4.4.

4.1 Composition optimization for Li

ion conductivity

Li-ion conductive oxides are attractive elec-

trolytes for Li-ion secondary batteries owing to

their stability and low toxicity. To increase the

Li-ion conductivity of a material, doping of ad-

ditives or mixing heterogeneous materials have

been considered. However, it is difficult to de-

termine the optimal chemical compositions us-

ing experimental methods. This is because it

is practically impossible to cover all composi-

tions because of the large number of possibil-

ities in the search space. Thus, to reduce the

number of experiments, Bayesian optimization

is a useful tool.

To investigate the efficiency of Bayesian op-

timization, we attempted to optimize the com-

position of the ternary oxide solid electrolyte

Li3PO4-Li3BO3-Li2SO4 [23, 24]. The mixed

material was stable under atmospheric con-

ditions and could be combined by sintering

with both positive and negative electrode ma-

terials. As the initial traial, we prepared 15

samples with a composition ratio interval of

25%. Using these 15 data points, a ternary

component heat map of Li-ion conductivity

was drawn by the Gaussian process regression,

which is shown in Fig. 3 (a). We can see that

in samples 7 and 8, the Li-ion conductivity in-

creased. Bayesian optimization was performed

using this as the initial state, and 10 samples

were further synthesized. Using all data, the

ternary component heat map is shown in Fig. 3

(b). We obtained an optimum polycrystalline

material with a composition of 25:14:61 (mol

%) for Li3PO4-Li3BO3-Li2SO4, which is three

times the Li-ion conductivity (4.9 × 10−4 S/cm

at 300 ◦C) compared with the highest case in

binary compounds.

4.2 Process optimization for gas at-

omization

The use of metal 3D printing is rapidly advanc-

ing in aerospace engines, and low-cost produc-

tion and a ready supply of superalloy powders

have become essential in the industry. In par-

ticular, for high-pressure turbine disks, which

are important components of engines, it is nec-

essary to produce high-quality superalloy pow-

ders with a high sphericity, uniform structure,

high yield, and low cost. Most of these pow-

ders are produced by gas atomization, and the

desired powder is produced using the industrial

equipment used in the manufacturing process.
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Figure 3: Heat maps of the Li-ion conductiv-

ity interpolated by the Gaussian process for (a)

initial 15 data and (b) 25 data after Bayesian

optimization. Panels reproduced with permis-

sion from Ref. [23].

To do this it is necessary to optimize multiple

process conditions such as the melting temper-

ature of the metal and gas pressure. Even with

the expertise of specialists, this optimization

task requires enormous cost, time, and human

resources.

In this study, Bayesian optimization was

used to optimize the gas atomization process

without the use of expert knowledge or his-

torical data (Fig. 4 (a)) [25]. A Ni-Co based

superalloy for high-pressure turbine disks with

excellent heat resistance was chosen for inves-

tigation. The target powder specifications are

a size of 53 µm or less, which is suitable for

turbine disk fabrication. The process of maxi-

mizing the yield of these powers was explored.

Melting temperature of the metal and gas pres-

sure were chosen from the various gas atomiza-

tion processes as a focus for the optimization.

First, as initial data, superalloy powders

were produced by three different processes, and

the yield under 53 µm was evaluated by sieve

classification. Using these data as the train-

ing data, a Gaussian process was trained to

predict the yields of the candidate processes

and estimate the errors. Here, in the can-

didates processes, the melting temperature is

T = 50 × i + 1400 [◦C] (i = 1, ..., 5) and the

gas pressure is P = i + 4 [MPa] (i = 1, ..., 5).

Based on the results of the prediction, we se-

lected the process with the highest acquisition

function and conducted powder production us-

ing the selected process. By repeating this op-

timization loop thrice, we succeeded in deter-

mining the process conditions to obtain the

target powder finer than 53 µm in approxi-

mately 78% yield, when it is typically a 10-30%

yield. The yields obtained from these six trials

and unit costs of the raw materials are shown

in Fig. 4 (b). By performing Bayesian opti-

mization, the yield was improved, and the unit

cost of the raw material was cheaper. The su-

peralloy powder produced by the process found

by Bayesian optimization succeeded in reduc-

ing the cost by approximately 72% compared

with commercially available powder (values es-

timated from the unit cost of raw materials).

4.3 Model parameter estimation

In condensed matter physics, knowing the ef-

fective model of a material is one method used

to understand the target material [27, 28].

Bayesian statistics are useful for solving in-

verse problems [29], in which an effective

model is derived that explains the given simu-

lation results or experimental results. Based

on Bayesian statistics, plausible model pa-

rameters in the effective model that explain

the given physical quantity are determined by
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Figure 4: (a) Cycle of Bayesian optimization

in process optimization of gas atomization. (b)

Yields and the unit cost depending on the cy-

cles. Values obtained for commercial gas at-

omized powders prepared by Company A and

Company B [26] are also plotted. Panels re-

produced with permission from Ref. [25].

maximizing the posterior distribution, which is

defined as

P (x|ytarget) ∝ exp[−E(x)], (11)

where the energy function E(x) as a function

of model parameters x is given by

E(x) = 1/(2σ2)(ytarget − ycal(x))2

− log[P (x)], (12)

where ytarget and ycal(x) are the sets of physi-

cal quantities given as targets and those calcu-

lated from the effective model characterized by

x, respectively. In addition, P (x) is the prior

distribution that expresses prior knowledge of

the model parameters x. To estimate an ef-

fective model, the maximizer of the posterior

distribution should be determined. This prob-

lem can be solved using Bayesian optimization,

where the value of y is generated from the pos-

terior distribution.

As a sample problem, the estimation of mag-

netic interactions of the spin-1/2 Heisenberg

chain model at 12 sites from a magnetization

curve was set as a challenge. Here, three

types of magnetic interactions that need to

be estimated are considered: nearest neighbor

J1, next-nearest neighbor J2, and 3rd-nearest

neighbor J3. Thus, the Hamiltonian can be

written as

H =

12∑
i=1

J1Si · Si+1

+J2Si · Si+2 + J3Si · Si+3, (13)

where Si denotes the vector of the spin op-

erator at i-th site. In addition, a periodic

boundary condition is imposed as follows: Si =

Si+12.

In the model parameter estimation,

firstly, the target magnetization curve

{mtarget(hj)}j=1,...,Nh
is given. Here, hj is

the magnetic field and Nh is the number of

magnetizations with different hj . Instead

of the value of posterior distribution itself,

we used the difference between the target

and calculated magnetization curves as y in

Bayesian optimization, which is given as

y = −
Nh∑
j=1

[mtarget(hj)−m(hj ; J1, J2, J3)]
2,(14)

where {m(hj ; J1, J2, J3)}j=1,...,Nh
is the calcu-

lated magnetization curve when the interac-

tion values (J1, J2, J3) are given. By searching

for (J1, J2, J3) such that y is maximized, the

difference between the target and calculated

magnetization curves is minimized, and we can

estimate the model parameters that describe

the target magnetization curve.
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We prepared the target magnetization curve

using the Hamiltonian with (J1, J2, J3) =

(1.0, 0.5, 0.3); that is, these values are the so-

lution to the model estimation problem. We

usedHΦ package [30] to calculate the magneti-

zation curve, which is a quantum lattice solver

that uses the exact diagonalization method. In

Bayesian optimization, the search space is set

as a grid in which each magnetic interaction is

discretized between 0 and 2 in increments of

0.1 for J1, J2, and J3. Thus, the total number

of input candidates is 213 = 9261. The best

difference as a function of the number of cycles

in Bayesian optimization is shown in Fig. 5.

Using Bayesian optimization, we demonstrated

that better parameters for an effective model

can be found.

Figure 5: Best difference (= −y) during the

optimization as a function of the number of cy-

cles. The results are compared with the results

of random sampling. The inset is an enlarged

view. Panels reproduced with permission from

Ref. [20].

4.4 Materials screening for multi-

objective optimization

Finally, the results of multi-objective optimiza-

tion problems using Bayesian optimization are

introduced. The purpose of multi-objective

optimization is to find as many Pareto solu-

tions as possible. Here, the Pareto solution

is defined as the optimal solution obtained

by varying the balance of the objective func-

tions. A metric for determining whether bet-

ter Pareto solutions are found is the dom-

inated region, which is the area dominated

by Pareto solutions in the objective function

space. The target problem is materials screen-

ing, where we search for materials with a

large bandgap and a large electronic dielec-

tric constant. In general, these properties ex-

hibit a trade-off tendency, in other words, as

the bandgap increases, the electronic dielectric

constant decreases. In order to address this

problem, we used the semiconductor database

from Ref. [31], and found the number of mate-

rials is 1277. First principles simulation results

are presented in this database. We use the

compositional descriptors generated by Mag-

pie [32] as x.

The number of Pareto solutions obtained by

performing Bayesian optimization with multi-

ple objectives as a function of the number of

cycles is plotted in Fig. 6 (a). For Bayesian op-

timization, three types of scores were used for

multi-objective optimization, called TS, EHVI,

and HVPI. The results show that Bayesian op-

timization was able to find many more Pareto

solutions than random sampling. The area of

the dominated region was calculated for the

results after 200 cycles. A large value of this

area indicates that better Pareto solutions are

found. Figure 6 (b) shows a violin plot for this

area using 10 independent runs. Bayesian op-

timization produced a significantly larger dom-

inated area than random sampling.

5 Summary

We introduced a Bayesian optimization tech-

nique and demonstrated its application in ma-

terials science. Bayesian optimization is a ma-

chine learning method that can effectively se-

lect the next experiments or simulations. The

efficiency of Bayesian optimization is recog-

nized in materials science, and thus, many
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Figure 6: (a) Number of Pareto solutions

found as a function of the number of cycles

by PHYSBO for a multi-objective optimiza-

tion problem. (b) Dominated region depend-

ing on the method when the number of cycles is

200. Panels reproduced with permission from

Ref. [20].

problems can be solved using this technique in

the future. In particular, using the PHYSBO

package, massive parallel calculations can be

performed using supercomputers, and we ex-

pect that more complicated problems can be

solved.
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