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Abstract

Machine-learning interatomic potential (MLIP) is
based on low-cost ML models trained with first-
principles data to achieve high accuracy in molec-
ular dynamics simulations, expanding the range of
applicable time-space domains. However, the cur-
rent widely used training method has limitations
in accurately estimating stress and fundamental
physical quantities such as free energy and ther-
mal conductivity. We have therefore emphasized
the importance of stress training for MLIPs and
investigated other issues behind the current train-
ing method. The report discusses the role of stress
training in reproducing solid-liquid phase transi-
tions and estimating thermal conductivity, as well
as the effect of training data with different k points
on free energy.

1 Introduction

The machine-learning interatomic potential
(MLIP) is used in a wide range of research
fields. By training low-cost machine learning
models with first-principles molecular dynamics
(FPMD) data, the MLIP achieves high accuracy,
significantly expanding the applicable space-time
domain of MD simulations. MLIP is used to
calculate physical quantities that require large
statistical amounts, to investigate phenomena
occurring in long-term dynamic simulations
such as shock waves, and to explore reaction
pathways [1, 2, 3].

Under these circumstances, we have been work-

ing on the refining the training method of MLIPs.
In particular, we have emphasized the importance
of stress training to MLIP [4, 5]. Recent main-
stream training methods set total potential energy
and atomic force as the targets in training [6]. De-
spite the fact that the accuracy of stress is not guar-
anteed, some previous studies to investigate high-
pressure phenomena have utilized such MLIPs. It
is moreover found that the stress training is nec-
essary to accurately estimate fundamental physi-
cal quantities such as thermal conductivity (TC),
and becomes one of the indispensable training
conditions [5]. This report discusses the impor-
tance of stress training of MLIPs for reproducing a
phase transition and estimating TC. In addition, we
also discuss the effect of training data with differ-
ent k points on thermodynamic quantities obtained
through MLIPs, such as free energy. As the MLIP,
we adopted an interatomic potential using an arti-
ficial neural network (ANN potential).

1.1 Stress training

Originally MLIPs were trained with only total po-
tential energy. Afterward, atomic force, which is
crucial for MD simulations, was integrated into
the training process, leading to a significant im-
provement in accuracy compared to MLIPs that
only consider the total potential energy. Recently,
some MLIPs have been obtained by training with
FP data of the total potential energy, atomic force,
and stress. However, such MLIPs that target stress
in training may still be in a minority. In this report,
we show our results that the accuracy of stress is
not guaranteed by training with the total potential
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energy and atomic force alone, and that the solid-
liquid phase transition of Na is accurately repro-
duced by training with stress [4].

1.2 Free energy calculation

Thermodynamic integration (TI) is a popular
method for computing free energy, but when com-
bined with MLIPs such as ANN potentials, some
considerations need to be taken for liquids. We
discovered a method that involved two steps, us-
ing an ideal gas and a soft potential as reference
systems [7]. We show how to calculate the free en-
ergies of solid and liquid states by the TI method
using ANN potential for Na [4].

Furthermore, in numerous previous studies,
MLIPs were trained using FP data with multiple
k points instead of using of large-scale systems.
We however show that as precision requirements
increase, larger systems with a greater number of k
points will be necessary for the free energy calcu-
lation [4].

1.3 TC calculation

The TC calculation method based on the Green-
Kubo (GK) formula has been widely used because
it can be applied to even disordered systems. How-
ever, MLIPs including the ANN potential belong
to many-body potentials, and the many-body ef-
fects have to be taken into account in the formula
of the heat flux [8]. We found that using the rigor-
ous heat flux formula considering the effects to-
gether with applying stress training to the ANN
potential led to highly accurate TC estimates [9].
Here, we show the result of the TC for the supe-
rionic conducting Ag2Se (α-Ag2Se) by homoge-
neous nonequilibrium MD (HNEMD) based on the
GK formula [9].

2 Computational Details

In this study, FPMD and MD simulations us-
ing MLIPs were conducted using the QXMD
code [10].

2.1 ANN potential

The ANN potentials were constructed using
ænet [11], which is a training code developed by
Artrith et al. The ANN potential comprises feed
forward neural networks (FFNNs) created for each
atomic species. The total potential energy UANN

is defined by the sum of the atomic potential ener-
gies {εANN

i } output from FFNNs for all atoms in
the system [12].

UANN =
Natom

∑
i

εANN
i , (1)

where Natom denotes the total number of atoms.
The atomic potential energy depends on the

structural descriptor used. Chebyshev descrip-
tors [13] were used in this study. The atomic po-
tential energy of the Chebyshev descriptor is only
a function of the relative coordinates ri j [5]

εANN
i = εANN

i
(
{ri j} j ̸=i

)
. (2)

2.2 Training methods

The following cost function C was used to train the
ANN potentials. It consists of three loss functions,
i.e., the total potential energy, atomic force, and
virial.
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where NI denotes the number of training data. The
symbol “Ref” denotes the training data. Factor 6
for the virial term reflects the number of indepen-
dent degrees of freedom of the virial tensor WANN

I .
Because the three loss functions differ in dimen-
sion and size, pU , pF , and pW are introduced as
adjustable parameters. With appropriate settings
of these parameters, highly accurate ANN poten-
tials can be constructed [14].

Note that the training for virial tensor WANN
I is

equivalent to that for the stress tensor PANN
I calcu-

lated by dividing WANN
I by supercell volume.
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The ANN potential trained with total potential
energy and atomic force is called EF-fit, while the
one trained including virial is called EFP-fit.

2.3 Generation of training data on Na

We obtained the training data of Na by running
FPMD simulations. We calculated the electronic
states using the projector-augmented-wave (PAW)
method [15] within the framework of density func-
tional theory (DFT) [16], in which the generalized
gradient approximation (GGA) [17] was used for
the exchange-correlation energy. The plane-wave
cutoff energies were 10 and 50 Ry for the elec-
tronic pseudo-wave functions and pseudo-charge
density, respectively. Projector functions were
generated for the 3s, 3p, and 3d state of Na atom.

The FPMD simulations were mainly performed
using 128 Na atoms with periodic boundary con-
ditions. For the Brillouin-zone sampling, 4 and
32 special k points were utilized in addition to the
Γ point. These are equivalent to sampling at the
Γ point in systems consisting of 1024 and 8192
atoms, respectively. For comparison, FPMD sim-
ulations were also conducted on 1024 Na atoms
using the Γ point. The equations of motion were
solved under the isothermal-isobaric (NPT ) en-
semble through an explicit reversible integrator
[18]. The pressure was set to be ambient. The MD
time step ∆t was 2.9 fs. The simulation tempera-
ture was mainly set to 350 K. In addition, FPMD
data using 128 atoms with Γ point were prepared
for heating and cooling processes in the range be-
tween 450 and 200 K to investigate whether the
ANN potential can reproduce the melting and so-
lidification processes of Na.

2.4 TI method

In the TI method [4, 7], the interaction energy
U(λ ) with parameter λ and the Helmholtz free en-
ergy F(λ ) are connected by the following relation:

∂F(λ )
∂λ

=

⟨
∂U(λ )

∂λ

⟩
NV T

, (4)

where ⟨· · · ⟩NV T denotes the canonical (NV T ) en-
semble average. U(λ ) is given as

U(λ ) = λUNa +(1−λ )Uref (0 ≤ λ ≤ 1), (5)

where UNa and Uref are the total potential energies
of the target (Na) and reference systems, respec-
tively. By substituting Eq. (5) into Eq. (4), and
integrating both sides with respect to λ from 0 to
1, we obtain the following formula:

F(λ = 1)−F(λ = 0) =
∫ 1

0
⟨UNa −URef⟩NV T dλ .

(6)
F(λ = 1) and F(λ = 0) are the free energies of
the target and reference systems, respectively. As
reference systems for the solid and liquid phases,
we employed an Einstein solid and an ideal gas,
respectively.

In the liquid phase, the soft core (SC) poten-
tial USC, defined as follows, was employed to
avoid shortening the interatomic distance as λ ap-
proaches zero [7].

USC({rrri}) =
N

∑
i< j

µ
(

σ
ri j

)n

. (7)

The parameters were used to be µ = 7.92 ×
10−4 hartree, σ = 6.752 bohr, and n = 12. The
Helmholtz free energy in the liquid phase was cal-
culated by two TIs. The first TI is calculated along
the ideal gas to SC liquid and the second one is
from SC to the target liquid Na. In addition, to
integrate the first while preventing divergence at
smaller λ , we adopted the coordinate transforma-
tion from λ to x proposed in the previous study
[19]

λ (x) =
(

x+1
2

) 1
1−k

, (8)

where the interval of integration is changed from
0 ≤ λ ≤ 1 to −1 ≤ x ≤ 1. We employed the pa-
rameter k = 0.85. Applying this transformation to
the integration with respect to λ , we have the fol-
lowing formula:∫ 1

0
f (λ )dλ =

1
2(1− k)

∫ 1

−1
f (λ (x))λ (x)kdx .

(9)
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2.5 Generation of training data on α-
Ag2Se

We generated training data using MD simulations
with an empirical interatomic potential (EIP) in-
stead of FPMD. One reason for this is that we
can obtain a reference value of TC. The other rea-
son is that the EIP of Ag2Se proposed by Rino et
al. [20] is a physically excellent EIP that can de-
scribe phase transitions among nonsuperionic, su-
perionic conducting, and liquid phases [21]. The
training data were obtained by MD simulation with
the NV T ensemble at 500 K for the α-Ag2Se sys-
tem that comprises 256 Ag + 128 Se atoms in ex-
perimental density [22].

2.6 TC calculation

2.6.1 GK formula and heat flux

According to the GK formula [23, 24], the αβ
component of the TC tensor καβ can be estimated
as (α,β ∈ {x,y,z})

καβ =
Ω

kBT 2

∫ ∞

0
⟨JQ,α(t)JQ,β (0)⟩dt, (10)

where T , kB, and Ω are temperature, the Boltz-
mann constant, and volume of the supercell, re-
spectively. ⟨JQ,α(t)JQ,β (0)⟩ denotes the auto-
correlation function of the heat flux JQ, and the
following expression is employed for both the EIP
and ANN potentials:

JQ =
1
Ω

Natom

∑
i

tivi +
1
Ω

Natom

∑
i

εivi +
1
Ω

Natom

∑
i

Wivi

, (11)

where ti, vi, εi, and Wi are atomic kinetic energy,
velocity, potential energy, and virial tensor for the
ith atom, respectively.

2.6.2 Atomic virials in heat flux formula

To derive a rigorous formula of the heat flux for
the many-body potentials, an expression for the
atomic potential energy is required [8], which cor-
responds to Eq. (2) for the ANN potentials. In our
previous study [5], we have succeeded in deriving

the heat flux formula and showed that the atomic
virial is expressed as follows.

WANN-I
i = ∑

j ̸=i
ri j ⊗

∂εANN
j

∂r ji
. (12)

Incidentally, for the many-body potentials such
as the ANN potential, there are countless defini-
tions of atomic virial which give identical total
virials [9, 5]. We define two more apparently rea-
sonable atomic virials used for heat fluxes in the
previous studies.

WANN-II
i = ∑

j ̸=i
ri j ⊗

∂εANN
i

∂r ji
, (13)

and

WANN-III
i =

1
2 ∑

j ̸=i
ri j ⊗

[
∂εANN

i
∂r ji

+
∂εANN

j

∂r ji

]
. (14)

WANN-II
i appears naturally in the stress-tensor

derivation for the ANN potentials [25]. In
Ref. [26], WANN-III

i was used because the pair-

wise force defined as FANN
i j = −

[
∂εANN

i
∂r ji

+
∂εANN

j
∂r ji

]
satisfies Newton’s third law [8]. The summation
∑Natom

j FANN
i j is equal to FANN

i . While the mathe-
matical properties of the three atomic virials dif-
fer, their sums over Natom yield the same total virial
WANN. Hereinafter, the heat flux formulae defined
by substituting WANN-I

i , WANN-II
i , and WANN-III

i
into Eq. (11) are referred to as JI

Q, JII
Q, and JIII

Q , re-
spectively. Some studies used ANN potentials that
estimated TCs with JII

Q [27] and JIII
Q [26]. Recent

studies highlighted that the atomic virial can sig-
nificantly impact the TC when dealing with many-
body potentials [8, 28, 29]. It is crucial to compare
the TCs obtained from these heat flux formulae.

2.6.3 HNEMD method

The HNEMD method [30], which is based on the
GK formula, has successfully reduced the compu-
tational cost by enabling the calculation of TC us-
ing the time average of the heat flux instead of in-
tegrating its auto-correlation function.

κ =
Ω

FextT
lim
t→∞

⟨JQ,x⟩t , (15)
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where Fext denotes a magnitude of perturbation
along the x direction of the system. Fext = 0.01
bohr−1 was selected for the HNEMD simulations
in this study [5].

3 Results

3.1 Solid-liquid phase transition of Na

We first investigated whether the EF-fit and EFP-
fit models reproduced the hysteresis of melting and
solidification in Na [4]. These two types of ANN
potentials were constructed from the FPMD data in
the temperature range of 200 to 450 K, performed
using 128 atoms with Γ point as mentioned in sec-
tion 2.3. The EFP-fit was able to accurately repro-
duce the heating and cooling processes of FPMD.
The temperature dependence of radial distribution
function g(r) obtained from the MD simulations
is shown in Fig. 1. g(r)’s by the EFP-fit (green
dashed lines) are quite consistent with the FPMD
results (black solid lines). In contrast, the g(r) ob-
tained from the MD simulations using EF-fit (red
dashed lines) showed a significant deviation from
those obtained from FPMD . The above results
demonstrate the risk by using MLIPs such as EF-
fit, which do not guarantee the accuracy of stress.

3.2 Size dependence of the free energy of
Na

In many previous studies, the training data of
MLIPs were created by FP calculation with many
k points to avoid using large-scale systems. How-
ever, it is not obvious whether the respective
MLIPs constructed from the training data obtained
with a specific number of k points and correspond-
ing system sizes show equivalent accuracy. There-
fore, we conducted the following analysis to clar-
ify the influence of training conditions such as sys-
tem size and the number of k points on thermody-
namic quantities such as free energy [4].

We created the four types of EFP-fit models.
These were trained with the FPMD data obtained
from the 128-atom system with Γ point, 128-
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2 4 6 8
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Figure 1: Temperature dependence of the radial
distribution function g(r) in the heating and cool-
ing processes. The black solid lines correspond to
the results from FPMD simulations. The red and
green dashed lines correspond to those from MD
simulations with EF-fit and EFP-fit, respectively.
Taken from Ref. [4].

atom system with 4k points, 128-atom system
with 32k points, and 1024-atom system with Γ
point, which are hereinafter referred to as 128-
ΓANN, 128-4kANN, 128-32kANN, and 1024-
ΓANN potentials, respectively. To investigate the
size-dependent behavior of thermodynamic quan-
tities, we calculated the Helmholtz free energy
for 128 and 1024 atoms using 128-ΓANN and
128-4kANN potentials. Additionally, for compar-
ison, we computed the same quantities for 1024
atoms using 1024-ΓANN and 128-32kANN poten-
tials. Figure 2 shows the (a) Helmholtz free en-
ergy F , (b) total potential energy U , and (c) prod-
uct of entropy and temperature T S as a function
of the number of atoms N. The triangles and cir-
cles represent the solid and liquid phases, respec-
tively. The black, red, green, and blue symbols de-
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note the values calculated using the 1024-ΓANN,
128-4kANN, 128-ΓANN, and 128-32kANN po-
tentials, respectively. As observed from this figure,
the outcomes obtained using the128-ΓANN poten-
tial exhibit significant deviation from the others.
Moreover, the values computed using the 1024-
ΓANN, 128-4kANN, and 128-32kANN potentials
are nearly identical with regard to the vertical axis.
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F
 [
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m

]

-391.72
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U
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(c)

Figure 2: (a) Helmholtz free energy F , (b) total
potential energy U , and (c) product of entropy and
temperature T S obtained using the TI method at
350 K as a function of the number of atoms N.
Triangles and circles correspond to the solid and
liquid states, respectively. The black, red, green,
and blue symbols indicate the values calculated
using the 1024-ΓANN, 128-4kANN, 128-ΓANN,
and 128-32kANN potentials, respectively. Taken
from Ref. [4].

To further examine the size dependence, we
computed the differences in Helmholtz free en-
ergy between the solid and liquid states ∆F =

Fliq −Fsol, as shown in Table 1. From the table,
we obtained the following findings: (i) the val-
ues obtained from the 128-ΓANN potential dif-
fers largely from the others; (ii) the difference in

∆F between 128 and 1024 atoms is merely 0.13
and 0.11 meV/atom when calculated with the 128-
ΓANN and 128-4kANN, respectively, suggesting
that for systems with more than 128 atoms, the size
dependence on ∆F is almost negligible in compar-
ison with the difference of Helmholtz free energy;
(iii) the difference between the ∆F values com-
puted using the128-4kANN and 1024-ΓANN po-
tentials is relatively small, with a difference of only
0.50 meV/atom for 1024 atoms; (iv) the value of
∆F obtained using the 128-32kANN is more sim-
ilar to that obtained using the 1024-ΓANN than to
that obtained using the 128-4kANN. Despite being
trained with FPMD data at a single temperature of
350 K, the 128-4kANN potential is capable of ac-
curately calculating ∆F with an error of only a few
tenths of meV/atom. However, if higher precision
is required, larger systems with more k points will
be necessary.

Table 1: Differences of Helmholtz free energy
∆F = Fliq−Fsol between the solid and liquid states
at 350 K in meV/atom. Taken from Ref. [4]

Atoms 128-Γ 128-4k 1024-Γ 128-32k

128 -2.47 -0.63 - -
1024 -2.34 -0.74 -0.24 -0.33

3.3 TC calculation of α-Ag2Se

The stress training is also associated with the ac-
curacy of TC. Here, we present the results of an
investigation of the influence of the heat flux for-
mulae (JI

Q, JII
Q, and JIII

Q ) and stress training on TC,
using α-Ag2Se as the test system [5].

To examine the effect of stress training, we used
the EF-fit and EFP-fit models, and also took into
account the dependence of the initial weight pa-
rameters in ANN. We constructed five each of
the EF-fit and EFP-fit with different initial weight
parameters. Figure 3 plots five TCs (κANN) ob-
tained from the respective EF-fit and EFP-fit mod-
els as a function of root mean square errors of
stress for the validation data (∆Pvalid). The verti-
cal axis shows the absolute value |κANN − κEIP|,
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where κEIP is the reference TC obtained from the
EIP (0.274 Wm−1K−1). For the EF-fit, while three
TCs calculated by JI

Q are sufficiently close to 0,
all of the five ∆Pvalid are larger than 0.47 GPa.
Furthermore, |κANN −κEIP| exhibits a large value
of ∼ 0.2 Wm−1K−1 with higher values of ∆Pvalid

when using JI
Q. JII

Q gives large errors of the TCs
∼0.25 Wm−1K−1 with higher ∆Pvalid. In the case
of the TC calculated with JIII

Q , the deviation in the
TC is larger than 0.02 Wm−1K−1. The plots in
Fig. 3 indicate that when ∆Pvalid is larger, errors in
TC become larger and sometimes result in signifi-
cant deviations.

The good agreement with the reference values
suggests that stress training plays a crucial role as
anticipated. For EFP-fit, all |κANN − κEIP| calcu-
lated with JI

Q is plotted near the origin as shown
in Fig. 3. There are no cases showing larger TC
errors as seen in the EF-fit. The maximum value
of |κANN − κEIP| is ∼0.005 W m−1K−1, which
is much smaller than even the minimum values
of |κANN − κEIP| calculated with JII

Q and JIII
Q , i.e.

0.055 and 0.041 W m−1K−1, respectively.
From the above results, only JI

Q gives a correct
estimation of TC. Further, the correct TC may not
be obtained even with JI

Q unless ∆Pvalid is suffi-
ciently minimized through stress training.

4 Summary

In this report, we have investigated and discussed
issues that are unverified with the current training
method of MLIPs. Specifically, we reported that
the stress training is necessary to accurately repro-
duce the solid-liquid phase transition of Na and the
TC of α-Ag2Se. In addition, it was suggested that
in order to construct more accurate MLIPs from
the viewpoint of free energy calculations, increas-
ing the number of k points is not the only solution,
and a large-scale system is also necessary.

We would like here to comment on other un-
established aspects of MLIP training methods. It
is important to recognize that adjusting the coef-
ficients of the cost function can dramatically alter
the accuracy of MLIPs [14]. The heat flux regu-
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Figure 3: Absolute difference between the TC cal-
culated from the ANN potentials (κANN) and the
EIP (κEIP) as a function of root mean square errors
for the validation data (∆Pvalid) of five ANN po-
tentials belonging EF-fit (filled circles) and EFP-
fit (cross marks) for the validation data. κANN

and κEIP are calculated from HNEMD simulations.
κANN are computed using heat flux formulae JI

Q
(black), JII

Q (red), and JIII
Q (green). Taken from

Ref. [5].

larization method [31] introduced into the cost-
function to estimate partial TCs may also lead to
improved robustness of MLIPs. It should be em-
phasized that more attention should be paid to the
importance of the modification of the cost function
for the improvement of MLIPs as well as the devel-
opments in their architectures and descriptors.
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